
AI Classical and Non-deterministic Planning: Model-based
Autonomous Behavior

Sebastian Sardiña

School of Computing Technologies
RMIT University

Julio 28 - Agosto 1 2025

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 1/238

Part I

Classical Planning: Languages

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 38/238

Part 1: Classical Planning: Languages

1 Motivation

2 State Models and Search

3 Planning Languages

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 39/238

Part 1: Classical Planning: Languages

1 Motivation

2 State Models and Search

3 Planning Languages

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 39/238

Course Web Page

https://ssardina.github.io/courses/eci25/
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 40/238

https://ssardina.github.io/courses/eci25/

Beating Kasparov is great...

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 41/238

Beating Kasparov is great . . . but how to play Mario?

• You (and your brother/sister/little nephew) are better than Deep Blue at everything -
except playing Chess.

Question-Circle Is that (artificial) ‘Intelligence’?

à How to build machines that automatically solve new problems?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 42/238

Planning: Motivation

How to develop systems or “agents”
that can make decisions on their own?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 43/238

Autonomous Behavior in AI
Key problem is to select the action to do next. This is the so-called “control problem”.

Three mainstream approaches to action selection

1 Behavior-based: Set of independent simple reactive modules.
/ Brook’s subsumption architecture (80’)

2 Programming-based: Specify control by hand
/ Agent-oriented programming (e.g., PRS, JACK, 3APL, SARL)

3 Learning-based: Learn control from experience
/ Reinforcement Learning; Evolutionary algorithms

4 Model-based: Specify problem by hand, derive control automatically
/ Automated Planning, Model Predictive Control

Note:
• Approaches not orthogonal; successes and limitations in each ...
• Different models yield different types of controllers ...

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 44/238

Programming-Based Approach

Control specified by programmer, e.g.:
• If Mario finds no danger, then run...

• If danger appears and Mario is big, jump and kill ...

• ...

D Advantage: domain-knowledge easy to express.

6 Disadvantage: cannot deal with situations not anticipated by programmer.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 45/238

Learning-Based Approach

Learns a controller from experience or through simulation:
• Unsupervised (Reinforcement Learning):

I penalize Mario each time that ’dies’
I reward agent each time oponent ’dies’ and level is finished, ...

• Supervised (Classification)
I learn to classify actions into good or bad from info provided by teacher

• Evolutionary:
I from pool of possible controllers: try them out, select the ones that do best, and mutate

and recombine for a number of iterations, keeping best

D Advantage: does not require much knowledge in principle.

6 Disadvantage: in practice, hard to know which features to learn, and is slow.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 46/238

General Problem Solving

Ambition: Write one program that can solve all problems.
• Write X ∈ {“algorithms”} : for all Y ∈ {“problems”} : X “solves” Y

• What is a “problem”? What does it mean to “solve” it?

Ambition 2.0: Write one program that can solve a large class of problems.

Ambition 3.0: Write one program that can solve a large class of problems effectively.

(some new problem) ; (describe problem → use off-the-shelf solver) ; (solution
competitive with a human-made specialized program)

Beat humans at coming up with clever solution methods!

(Link: GPS started on 1959)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 47/238

https://en.wikipedia.org/wiki/General_Problem_Solver

Model-Based Approach / General Problem Solving

1 specify model for problem: actions, initial situation, goals, and sensors; and
2 let a solver compute controller automatically.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 48/238

Programming vs. Planning

Patrol Flight

Monster in sight

No monster

vs

Actions available:
1 Patrol:

I Preconditions: No Monster
I Effects: patrolled

2 Fight:
I Preconditions: Monster in sight
I Effects: No Monster

Goal: area patrolled

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 49/238

Programming vs. Planning

Patrol Flight

Monster in sight

No monster

vs

Actions available:
1 Patrol:

I Preconditions: No Monster
I Effects: patrolled

2 Fight:
I Preconditions: Monster in sight
I Effects: No Monster

Goal: area patrolled

none strictly

better!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 49/238

Model-Based Approach / General Problem Solving

D Advantages

• Powerful: In some applications generality is absolutely necessary.
• Quick: Rapid prototyping. 10s lines of problem description vs. 1000s lines of C++ code.

(Language generation!)
• Flexible & Clear: Adapt/maintain the description.
• Intelligent & domain-independent: Determines automatically how to solve a complex

problem effectively!

6 Disadvantages

• Need a model: Without knowledge about Chess, you don’t beat Kasparov ...
• Computationally intractable: at leat NP-hard!

Trade-off between “automatic and general” vs. “manual work but effective”.

Model-based approach to intelligent behavior called “Planning” in AI.
Question-Circle How to make fully automatic algorithms effective?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 50/238

Model-Based Approach / General Problem Solving

D Advantages

• Powerful: In some applications generality is absolutely necessary.
• Quick: Rapid prototyping. 10s lines of problem description vs. 1000s lines of C++ code.

(Language generation!)
• Flexible & Clear: Adapt/maintain the description.
• Intelligent & domain-independent: Determines automatically how to solve a complex

problem effectively!

6 Disadvantages

• Need a model: Without knowledge about Chess, you don’t beat Kasparov ...
• Computationally intractable: at leat NP-hard!

Trade-off between “automatic and general” vs. “manual work but effective”.

Model-based approach to intelligent behavior called “Planning” in AI.
Question-Circle How to make fully automatic algorithms effective?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 50/238

Model-Based Approach / General Problem Solving

D Advantages

• Powerful: In some applications generality is absolutely necessary.
• Quick: Rapid prototyping. 10s lines of problem description vs. 1000s lines of C++ code.

(Language generation!)
• Flexible & Clear: Adapt/maintain the description.
• Intelligent & domain-independent: Determines automatically how to solve a complex

problem effectively!

6 Disadvantages

• Need a model: Without knowledge about Chess, you don’t beat Kasparov ...
• Computationally intractable: at leat NP-hard!

Trade-off between “automatic and general” vs. “manual work but effective”.

Model-based approach to intelligent behavior called “Planning” in AI.
Question-Circle How to make fully automatic algorithms effective?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 50/238

What is “planning”?

Patrik Haslum

“Planning is the art and practice of thinking before acting: of reviewing the courses of
action one has available and predicting their expected (and unexpected) results to be able
to choose the course of action most beneficial with respect to one’s goals.”

Belief-Desire-Intention (BDI) model of agency - (Bratman ’87)

Rational behavior arises due to the agent committing to some of its desires, and selecting
actions that achieve its intentions given its beliefs.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 51/238

What is “planning”?

Patrik Haslum

“Planning is the art and practice of thinking before acting: of reviewing the courses of
action one has available and predicting their expected (and unexpected) results to be able
to choose the course of action most beneficial with respect to one’s goals.”

Belief-Desire-Intention (BDI) model of agency - (Bratman ’87)

Rational behavior arises due to the agent committing to some of its desires, and selecting
actions that achieve its intentions given its beliefs.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 51/238

Example: Classical Search Problem

• States: Card positions (position Jspades=Qhearts).
• Actions: Card moves (move Jspades Qhearts freecell4).
• Initial state: Start configuration.
• Goal states: All cards ‘home’.
• Solution: Card moves solving this game.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 52/238

Applications of Planning: Space

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 53/238

https://www.nasa.gov/intelligent-systems-division/autonomous-systems-and-robotics/planning-and-scheduling-group/
https://www.nasa.gov/intelligent-systems-division/autonomous-systems-and-robotics/planning-and-scheduling-group/
https://www.nasa.gov/intelligent-systems-division/autonomous-systems-and-robotics/planning-and-scheduling-group/
https://www.nasa.gov/intelligent-systems-division/autonomous-systems-and-robotics/planning-and-scheduling-group/

Applications of Planning: Machine Control

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 54/238

https://jair.org/index.php/jair/article/view/10693
https://jair.org/index.php/jair/article/view/10693

Applications of Planning: Train Dispatching

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 55/238

https://ojs.aaai.org/index.php/ICAPS/article/view/15991
https://ojs.aaai.org/index.php/ICAPS/article/view/15991

Applications of Planning: Traffic Light Control

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 56/238

https://aaai.org/papers/00391-13842-embedding-automated-planning-within-urban-traffic-management-operations/
https://aaai.org/papers/00391-13842-embedding-automated-planning-within-urban-traffic-management-operations/
https://www.scitepress.org/Papers/2022/108571/108571.pdf

Applications of Planning: UAVs and UGVs

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 57/238

https://link.springer.com/chapter/10.1007/978-3-030-38561-3_13
https://link.springer.com/chapter/10.1007/978-3-030-38561-3_13

Applications of Planning: MAPF

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 58/238

https://www.leagueofrobotrunners.org/

Applications of Planning: Others...

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 59/238

Applications of Planning: Others...

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 59/238

https://conf.researchr.org/details/icse-2023/icse-2023-SEIP/11/Scaling-Web-API-Integrations

Applications of Planning: Others...

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 59/238

https://conf.researchr.org/details/icse-2023/icse-2023-SEIP/11/Scaling-Web-API-Integrations
https://jair.org/index.php/jair/article/view/10768

Applications of Planning: Others...

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 59/238

https://conf.researchr.org/details/icse-2023/icse-2023-SEIP/11/Scaling-Web-API-Integrations
https://jair.org/index.php/jair/article/view/10768
https://link.springer.com/chapter/10.1007/978-3-030-38561-3_13

Applications of Planning: Others...

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 59/238

https://conf.researchr.org/details/icse-2023/icse-2023-SEIP/11/Scaling-Web-API-Integrations
https://jair.org/index.php/jair/article/view/10768
https://link.springer.com/chapter/10.1007/978-3-030-38561-3_13
https://link.springer.com/chapter/10.1007/978-3-030-38561-3_13

Part 1: Classical Planning: Languages

1 Motivation

2 State Models and Search

3 Planning Languages

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 60/238

Part 1: Classical Planning: Languages

1 Motivation

2 State Models and Search

3 Planning Languages

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 60/238

State Models & Plans

State Models S = 〈S, s0, SG, Act, A, f, c〉

• finite and discrete state space S
• a known initial state s0 ∈ S
• a set SG ⊆ S of goal states
• a set Act of actions
• subsets of actions A(s) ⊆ Act applicable in each s ∈ S
• a (deterministic) transition function s′ = f(a, s), a ∈ A(s)
• positive action costs c(a, s)

Solution Plan σ: sequence of applicable actions a0, . . . , an that reaches SG

There must be states s0, . . . , sn+1 such that:
1 s0 is the initial state and sn+1 ∈ SG is a goal state; and
2 si+1 = f(ai, si), ai ∈ A(si), for i = 0, . . . , n:

A plan is optimal if it minimizes the sum of action costs
∑

i=0,n c(ai, si).
If costs are all 1, plan cost is plan length.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 61/238

State Models & Plans

State Models S = 〈S, s0, SG, Act, A, f, c〉

• finite and discrete state space S
• a known initial state s0 ∈ S
• a set SG ⊆ S of goal states
• a set Act of actions
• subsets of actions A(s) ⊆ Act applicable in each s ∈ S
• a (deterministic) transition function s′ = f(a, s), a ∈ A(s)
• positive action costs c(a, s)

Solution Plan σ: sequence of applicable actions a0, . . . , an that reaches SG

There must be states s0, . . . , sn+1 such that:
1 s0 is the initial state and sn+1 ∈ SG is a goal state; and
2 si+1 = f(ai, si), ai ∈ A(si), for i = 0, . . . , n:

A plan is optimal if it minimizes the sum of action costs
∑

i=0,n c(ai, si).
If costs are all 1, plan cost is plan length.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 61/238

Classical Planning: Assumptions

Classical planning makes several assumptions about state models (underlined):

1 Static vs Dynamic: agent is the only actor in the world.

2 Deterministic vs Stochastic: actions have deterministic effects.

3 Instantaneous vs temporal: actions happy instantaneous.

4 Fully Observable vs Partially Observable: agent knows the state of the world.

5 Discrete vs Numeric: state space is finite and discrete.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 62/238

State Models: Variations

Other types of state models obtained by relaxing restriction:
• Markov Decision Processes: state transition probabilities Pa(s

′ | s) and full obs
• Partially Observable MDPs (POMDPs): Pa(s

′ | s and sensor model Pa(o | s), o ∈ Ω
• Fully Observable Non-Det (FOND) Models: set of successor states s′ ∈ F (a, s)
• Partially Observable Non-Det (POND) Models: F (a, s) and sensor model o(s) ∈ Ω
• Conformant Models: uncertain S0 and F (a, s), and no feedback,
• Continuous Models: infinite state space; e.g., represent velocity and continous

processes like filling a bucket.
• …

– In presence of uncertainty, feedback is critical.
– Solution form depends on feedback: open loop vs closed-loop control.

Our classical state models S are the simplest: s0 known, deterministic, known
dynamics f(a, s), no feedback; solutions are action sequences (open loop).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 63/238

State Model Variations: Example

• Agent, at lower-left corner, aims to find the gold,
while avoiding falling in a pit or meeting the
wumpus.

• Positions of pits, gold, and wumpus, however, not
known, but agent can sense presence of pit or
Wumpus when at distance 1

• How to model problem?

• What’s a solution? How to find it?
By Eshika Shah - “Wumpus World in AI”

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 64/238

https://www.scaler.com/topics/artificial-intelligence-tutorial/wumpus-world-in-ai/
https://www.scaler.com/topics/artificial-intelligence-tutorial/wumpus-world-in-ai/

Examples of our basic, deterministic state models

Model these problems as state models; i.e. fill the 7 bullets of definition

• Navigation: agent moves in n×m grid with some cells blocked.
• 15-puzzle: sliding tiles in empty slot to get tiles 1 to 15 ordered.
• Blocks world: arm picks “clear” blocks from table or other blocks; reach target config.
• Delivery: n packages in grid must be picked & delivered to target cell.; one at a time.
• Missionaries and Cannibals: 3 Ms + 3 Cs to cross river using boat for 2; cannibals

can’t be outnumbered in either bench at risk of being converted.
• TSP: travelling salesman problem; min-cost tour that visits each node of a graph once
• Applications: GPS, Video Games, ...; matrix multiplication algorithms that minimize #

of operations wrt standard algorithms (Deep Mind 2022; Speck et al. 2023)

à States models sometimes called also search models, problem spaces, …
à In general, S given by state variables x1, …, xN and their domains D1, …, DN .
à Number of states |S| bounded by cross-product |D1| × |D2| × · · · × |Dn|; not all states

reachable with actions from s0.
à Model adequate if (opt) solutions to model represent (opt) solutions to problem.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 65/238

Examples: Navigation

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: agent locations s = (x, y); bottom left is (0, 0)

2 s0: initial location (x0, y0) = (0, 0)
3 SG: set of target locations
4 Act: up, down, right, left
5 A(s) includes up if cell (x, y + 1) for s = (x, y) is

traversable; it includes left if …
6 s′ = f(up, s) if s′ = (x, y + 1) and s = (x, y), …
7 c(a, s) = 1

Single state variable, x1, representing agent location with
n×m values (x, y) in D1.

• Agent moves in n×m grid.
• Some cells blocked.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 66/238

Examples: Navigation

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: agent locations s = (x, y); bottom left is (0, 0)
2 s0: initial location (x0, y0) = (0, 0)

3 SG: set of target locations
4 Act: up, down, right, left
5 A(s) includes up if cell (x, y + 1) for s = (x, y) is

traversable; it includes left if …
6 s′ = f(up, s) if s′ = (x, y + 1) and s = (x, y), …
7 c(a, s) = 1

Single state variable, x1, representing agent location with
n×m values (x, y) in D1.

• Agent moves in n×m grid.
• Some cells blocked.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 66/238

Examples: Navigation

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: agent locations s = (x, y); bottom left is (0, 0)
2 s0: initial location (x0, y0) = (0, 0)
3 SG: set of target locations

4 Act: up, down, right, left
5 A(s) includes up if cell (x, y + 1) for s = (x, y) is

traversable; it includes left if …
6 s′ = f(up, s) if s′ = (x, y + 1) and s = (x, y), …
7 c(a, s) = 1

Single state variable, x1, representing agent location with
n×m values (x, y) in D1.

• Agent moves in n×m grid.
• Some cells blocked.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 66/238

Examples: Navigation

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: agent locations s = (x, y); bottom left is (0, 0)
2 s0: initial location (x0, y0) = (0, 0)
3 SG: set of target locations
4 Act: up, down, right, left

5 A(s) includes up if cell (x, y + 1) for s = (x, y) is
traversable; it includes left if …

6 s′ = f(up, s) if s′ = (x, y + 1) and s = (x, y), …
7 c(a, s) = 1

Single state variable, x1, representing agent location with
n×m values (x, y) in D1.

• Agent moves in n×m grid.
• Some cells blocked.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 66/238

Examples: Navigation

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: agent locations s = (x, y); bottom left is (0, 0)
2 s0: initial location (x0, y0) = (0, 0)
3 SG: set of target locations
4 Act: up, down, right, left
5 A(s) includes up if cell (x, y + 1) for s = (x, y) is

traversable; it includes left if …

6 s′ = f(up, s) if s′ = (x, y + 1) and s = (x, y), …
7 c(a, s) = 1

Single state variable, x1, representing agent location with
n×m values (x, y) in D1.

• Agent moves in n×m grid.
• Some cells blocked.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 66/238

Examples: Navigation

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: agent locations s = (x, y); bottom left is (0, 0)
2 s0: initial location (x0, y0) = (0, 0)
3 SG: set of target locations
4 Act: up, down, right, left
5 A(s) includes up if cell (x, y + 1) for s = (x, y) is

traversable; it includes left if …
6 s′ = f(up, s) if s′ = (x, y + 1) and s = (x, y), …

7 c(a, s) = 1

Single state variable, x1, representing agent location with
n×m values (x, y) in D1.

• Agent moves in n×m grid.
• Some cells blocked.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 66/238

Examples: Navigation

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: agent locations s = (x, y); bottom left is (0, 0)
2 s0: initial location (x0, y0) = (0, 0)
3 SG: set of target locations
4 Act: up, down, right, left
5 A(s) includes up if cell (x, y + 1) for s = (x, y) is

traversable; it includes left if …
6 s′ = f(up, s) if s′ = (x, y + 1) and s = (x, y), …
7 c(a, s) = 1

Single state variable, x1, representing agent location with
n×m values (x, y) in D1.

• Agent moves in n×m grid.
• Some cells blocked.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 66/238

Example: 15-puzzle

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: a 16-tuple of unique values 0, . . . , 15 (0 is “blank”).
2 s0: (15, 2, 1, 12, 8, . . .); entry l at pos. t encodes loc(t) = l
3 SG: singleton state (1, 2, 3, 4, 5, . . . , 0)
4 Act: up, down, right, left (moving the “blank”)
5 A(s) includes up if location above blank in s, loc(0), in

board
6 s′ = f(up, s) is s′ is like s but with positions of blank and

tile above blank, swapped; similar for down, left, …
7 c(a, s) = 1

Reach ordered configuration
(1,2,3,4,..)

Can move the “blank” tile
up, down, left, right.

• The state variables xt are loc(t), t = 0, . . . , 16; domain Dt = {0, . . . , 15}
Question-Circle |S| not |D0| × |D1| × · · · × |D15| but 16! (16 Factorial).Why?
Question-Circle Alternative state model?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 67/238

Example: (Oh no it’s) The Blocksworld

Initial State

E A B C

D

Goal

A

C

E

D

B

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?
What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: assigns location to each block b: loc(b) can be another block, table, gripper.
2 s0: given initial state such that loc(A) = loc(B) = loc(C) = table; loc(D) = C.
3 SG: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
4 Act: pick block b, place block being held onto block b or table
5 A(s) includes pick(B) if loc(x) 6= B and loc(x) 6= gripper for all blocks x 6= B
6 s′ = f(pickup(x), s) is like s but with loc(x) set to gripper.
7 c(a, s) = 1

Question-Circle How many states? Not all assignments loc(b) = v reachable; state invariants (which?)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 68/238

Example: (Oh no it’s) The Blocksworld

Initial State

E A B C

D

Goal

A

C

E

D

B

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?
What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: assigns location to each block b: loc(b) can be another block, table, gripper.

2 s0: given initial state such that loc(A) = loc(B) = loc(C) = table; loc(D) = C.
3 SG: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
4 Act: pick block b, place block being held onto block b or table
5 A(s) includes pick(B) if loc(x) 6= B and loc(x) 6= gripper for all blocks x 6= B
6 s′ = f(pickup(x), s) is like s but with loc(x) set to gripper.
7 c(a, s) = 1

Question-Circle How many states? Not all assignments loc(b) = v reachable; state invariants (which?)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 68/238

Example: (Oh no it’s) The Blocksworld

Initial State

E A B C

D

Goal

A

C

E

D

B

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?
What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: assigns location to each block b: loc(b) can be another block, table, gripper.
2 s0: given initial state such that loc(A) = loc(B) = loc(C) = table; loc(D) = C.

3 SG: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
4 Act: pick block b, place block being held onto block b or table
5 A(s) includes pick(B) if loc(x) 6= B and loc(x) 6= gripper for all blocks x 6= B
6 s′ = f(pickup(x), s) is like s but with loc(x) set to gripper.
7 c(a, s) = 1

Question-Circle How many states? Not all assignments loc(b) = v reachable; state invariants (which?)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 68/238

Example: (Oh no it’s) The Blocksworld

Initial State

E A B C

D

Goal

A

C

E

D

B

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?
What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: assigns location to each block b: loc(b) can be another block, table, gripper.
2 s0: given initial state such that loc(A) = loc(B) = loc(C) = table; loc(D) = C.
3 SG: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D

4 Act: pick block b, place block being held onto block b or table
5 A(s) includes pick(B) if loc(x) 6= B and loc(x) 6= gripper for all blocks x 6= B
6 s′ = f(pickup(x), s) is like s but with loc(x) set to gripper.
7 c(a, s) = 1

Question-Circle How many states? Not all assignments loc(b) = v reachable; state invariants (which?)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 68/238

Example: (Oh no it’s) The Blocksworld

Initial State

E A B C

D

Goal

A

C

E

D

B

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?
What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: assigns location to each block b: loc(b) can be another block, table, gripper.
2 s0: given initial state such that loc(A) = loc(B) = loc(C) = table; loc(D) = C.
3 SG: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
4 Act: pick block b, place block being held onto block b or table

5 A(s) includes pick(B) if loc(x) 6= B and loc(x) 6= gripper for all blocks x 6= B
6 s′ = f(pickup(x), s) is like s but with loc(x) set to gripper.
7 c(a, s) = 1

Question-Circle How many states? Not all assignments loc(b) = v reachable; state invariants (which?)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 68/238

Example: (Oh no it’s) The Blocksworld

Initial State

E A B C

D

Goal

A

C

E

D

B

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?
What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: assigns location to each block b: loc(b) can be another block, table, gripper.
2 s0: given initial state such that loc(A) = loc(B) = loc(C) = table; loc(D) = C.
3 SG: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
4 Act: pick block b, place block being held onto block b or table
5 A(s) includes pick(B) if loc(x) 6= B and loc(x) 6= gripper for all blocks x 6= B

6 s′ = f(pickup(x), s) is like s but with loc(x) set to gripper.
7 c(a, s) = 1

Question-Circle How many states? Not all assignments loc(b) = v reachable; state invariants (which?)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 68/238

Example: (Oh no it’s) The Blocksworld

Initial State

E A B C

D

Goal

A

C

E

D

B

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?
What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: assigns location to each block b: loc(b) can be another block, table, gripper.
2 s0: given initial state such that loc(A) = loc(B) = loc(C) = table; loc(D) = C.
3 SG: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
4 Act: pick block b, place block being held onto block b or table
5 A(s) includes pick(B) if loc(x) 6= B and loc(x) 6= gripper for all blocks x 6= B
6 s′ = f(pickup(x), s) is like s but with loc(x) set to gripper.

7 c(a, s) = 1

Question-Circle How many states? Not all assignments loc(b) = v reachable; state invariants (which?)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 68/238

Example: (Oh no it’s) The Blocksworld

Initial State

E A B C

D

Goal

A

C

E

D

B

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?
What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: assigns location to each block b: loc(b) can be another block, table, gripper.
2 s0: given initial state such that loc(A) = loc(B) = loc(C) = table; loc(D) = C.
3 SG: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
4 Act: pick block b, place block being held onto block b or table
5 A(s) includes pick(B) if loc(x) 6= B and loc(x) 6= gripper for all blocks x 6= B
6 s′ = f(pickup(x), s) is like s but with loc(x) set to gripper.
7 c(a, s) = 1

Question-Circle How many states? Not all assignments loc(b) = v reachable; state invariants (which?)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 68/238

Example: (Oh no it’s) The Blocksworld

Initial State

E A B C

D

Goal

A

C

E

D

B

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?
What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: assigns location to each block b: loc(b) can be another block, table, gripper.
2 s0: given initial state such that loc(A) = loc(B) = loc(C) = table; loc(D) = C.
3 SG: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
4 Act: pick block b, place block being held onto block b or table
5 A(s) includes pick(B) if loc(x) 6= B and loc(x) 6= gripper for all blocks x 6= B
6 s′ = f(pickup(x), s) is like s but with loc(x) set to gripper.
7 c(a, s) = 1

Question-Circle How many states? Not all assignments loc(b) = v reachable; state invariants (which?)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 68/238

Example: (Oh no it’s) The Blocksworld

Initial State

E A B C

D

Goal

A

C

E

D

B

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?
What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: assigns location to each block b: loc(b) can be another block, table, gripper.
2 s0: given initial state such that loc(A) = loc(B) = loc(C) = table; loc(D) = C.
3 SG: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
4 Act: pick block b, place block being held onto block b or table
5 A(s) includes pick(B) if loc(x) 6= B and loc(x) 6= gripper for all blocks x 6= B
6 s′ = f(pickup(x), s) is like s but with loc(x) set to gripper.
7 c(a, s) = 1

Question-Circle How many states? Not all assignments loc(b) = v reachable; state invariants (which?)
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 68/238

Example: Delivery/Driverlog

Agent must move and pick packages spread in an n×m grid, and take them one by one, to
the target cells.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: location of agent and packages; loc(a), loc(pkg)
2 s0: given
3 SG: loc(pkg) = target for all packages pkg
4 Act: pick(pkg), drop(pkg), moves up, down, left, right
5 A(s) includes pick(pkg) if loc(pkg) = loc(a), and agent hand empty, …
6 s′ = f(pick(pkg), s) is like s but loc(pkg) changes to agent, …
7 c(a, s) = 1

Question-Circle Number of states is exponential, but exponential on what?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 69/238

Example: River crossing puzzle

A farmer needs to cross a river with a goat, a wolf, and
a cabbage. His boat can only carry one item at a time.
The goat cannot be left alone with the cabbage (the
goat will eat the cabbage!). The goat cannot be left
alone with the wolf (the wolf will eat the goat!)

Model problem as a state model S = 〈S, s0, SG, Act, A, f, c〉.

• s ∈ S: contains xl, xr ∈ {0, 1}, for x ∈ {cabbage, goat, boat, wolf}
• s0, SG, Act, …

* Constraint that “cabbage should not be left alone with the goat” is not a state invariant
(true no matter what actions are taken); but a constraint to be enforced!

Question-Circle What about make A(s) empty if s does not satisfy the constraint (making s a dead-end)?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 70/238

https://www.mindyourlogic.com/river-crossing-puzzles/goat-wolf-cabbage-river-crossing-puzzle

Example: River crossing puzzle

A farmer needs to cross a river with a goat, a wolf, and
a cabbage. His boat can only carry one item at a time.
The goat cannot be left alone with the cabbage (the
goat will eat the cabbage!). The goat cannot be left
alone with the wolf (the wolf will eat the goat!)

Model problem as a state model S = 〈S, s0, SG, Act, A, f, c〉.

• s ∈ S: contains xl, xr ∈ {0, 1}, for x ∈ {cabbage, goat, boat, wolf}
• s0, SG, Act, …

* Constraint that “cabbage should not be left alone with the goat” is not a state invariant
(true no matter what actions are taken); but a constraint to be enforced!

Question-Circle What about make A(s) empty if s does not satisfy the constraint (making s a dead-end)?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 70/238

https://www.mindyourlogic.com/river-crossing-puzzles/goat-wolf-cabbage-river-crossing-puzzle

Computation: How to solve (deterministic) state models?

• State model S defines directed graph G(S) with nodes n that represent states
s = s(n), and labeled edges that represent state transitions:
I root node n0 in G(S) represents initial state s(n0) = s0

I target nodes nG represent the goal states s(n) ⊆ SG

I labeled edge n →a n′ if s(n′) = f(a, s) for a ∈ A(s), s = s(n).

• Finding a solution to state model S becomes finding a path in graph G(S)
connecting nodes representing initial states and goal states.

• While any path-finding algorithms for graphs could be used for solving state models, few
scale up to very large graphs (billions of nodes!).

Exclamation-Triangle Size of state models and graphs is exponential in the number of state variables.
I Models and graphs not given explicitly but implicitly.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 71/238

Computation: How to solve (deterministic) state models?

• State model S defines directed graph G(S) with nodes n that represent states
s = s(n), and labeled edges that represent state transitions:
I root node n0 in G(S) represents initial state s(n0) = s0

I target nodes nG represent the goal states s(n) ⊆ SG

I labeled edge n →a n′ if s(n′) = f(a, s) for a ∈ A(s), s = s(n).

• Finding a solution to state model S becomes finding a path in graph G(S)
connecting nodes representing initial states and goal states.

• While any path-finding algorithms for graphs could be used for solving state models, few
scale up to very large graphs (billions of nodes!).

Exclamation-Triangle Size of state models and graphs is exponential in the number of state variables.
I Models and graphs not given explicitly but implicitly.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 71/238

Search Algorithms for Path Finding in Directed Graphs

Blind search/Brute force algorithms
Goal plays passive role in the search.

/ e.g., Depth First Search (DFS), Breadth-first search (BrFS), Uniform Cost (Dijkstra),
Iterative Deepening (ID), Iterative Width (IW)

Informed/Heuristic Search Algorithms
Goals plays active role in the search through heuristic function h(s) that estimates cost
from s to the goal.
• Heuristic h is said admissible if h(s) ≤ h∗(s) for all s where h∗ is optimal cost from s

to goal. That is, h is an optimistic estimate, or alternatively, a lower bound over cost.

/ e.g., A*, IDA*, Hill Climbing, Best First, DFS B&B, LRTA*, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 72/238

Search Algorithms for Path Finding in Directed Graphs

Blind search/Brute force algorithms
Goal plays passive role in the search.

/ e.g., Depth First Search (DFS), Breadth-first search (BrFS), Uniform Cost (Dijkstra),
Iterative Deepening (ID), Iterative Width (IW)

Informed/Heuristic Search Algorithms
Goals plays active role in the search through heuristic function h(s) that estimates cost
from s to the goal.
• Heuristic h is said admissible if h(s) ≤ h∗(s) for all s where h∗ is optimal cost from s

to goal. That is, h is an optimistic estimate, or alternatively, a lower bound over cost.

/ e.g., A*, IDA*, Hill Climbing, Best First, DFS B&B, LRTA*, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 72/238

Basic General Search Scheme (reviwe)

Solve(G: Graph, Init: State; Goals: Set Nodes)
Open := {(Init, g:0, f:0, p:None)}; Closed := {}
WHILE Open is not empty DO
Node := *Select-Node* from Open and move it to Closed
IF Node is Goal THEN RETURN Solution
IF s(Node) is not in Closed THEN

FOR EVERY Child in *Expand-Node* Node DO // Child = (s, g, f, p)
Add-node Child node to Open

RETURN Fail

• Nodes n are data structures that track state s(n) + bookkeeping info.
• Bookkeeping for n includes labeled pointer to parent and accummulated cost g(n)

I g(n) = c(a, n′) + g(n′) where n′ is parent of n, a is action label

• Duplicate nodes are nodes n and n′ that represent the same state s(n) = s(n′)
I They are avoided, except in depth-first search and tree-search algorithms
I For this, newly generated node n pruned if duplicate of n′ and g(n′) ≤ g(n)
I Yet if duplicate and g(n) < g(n′), n′ pruned instead (important! why?)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 73/238

Basic General Search Scheme (reviwe)

Solve(G: Graph, Init: State; Goals: Set Nodes)
Open := {(Init, g:0, f:0, p:None)}; Closed := {}
WHILE Open is not empty DO
Node := *Select-Node* from Open and move it to Closed
IF Node is Goal THEN RETURN Solution
IF s(Node) is not in Closed THEN

FOR EVERY Child in *Expand-Node* Node DO // Child = (s, g, f, p)
Add-node Child node to Open

RETURN Fail

• Nodes n are data structures that track state s(n) + bookkeeping info.
• Bookkeeping for n includes labeled pointer to parent and accummulated cost g(n)

I g(n) = c(a, n′) + g(n′) where n′ is parent of n, a is action label
• Duplicate nodes are nodes n and n′ that represent the same state s(n) = s(n′)

I They are avoided, except in depth-first search and tree-search algorithms
I For this, newly generated node n pruned if duplicate of n′ and g(n′) ≤ g(n)
I Yet if duplicate and g(n) < g(n′), n′ pruned instead (important! why?)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 73/238

One basic schema, many different search algorithms

• Different search algorithms obtained by different choices of node to expand from
Open given by:
I Select-Node Open
I Add-Nodes New Old Open

• Why to consider different algorithms? Because different properties:
I Completeness: guaranteed to find a solution if one exists.
I Optimality: guaranteed to find an optimal solution if one exists.
I Space complexity: memory used by algorithm.
I Time complexity: time used by algorithm.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 74/238

Some instances of general search scheme

• Depth-First Search expands ‘deepest’ nodes n first
I Select-Node Open: Select First Node in Open

I Add-Nodes New Old: Puts New before Old

I Implementation: Open as a Stack (LIFO)
I Cycle checking: prune Child in New if duplicate of ancestor

• Breadth-First Search expands ‘shallowest’ nodes n first
I Select-Node Open: Selects First Node in Open

I Add-Nodes New Old: Puts New after Old

I Implementation: Open as a Queue (FIFO)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 75/238

Heuristic search and heuristic functions

• Heuristic search algorithms use two functions:
I g(n): accumulated cost from root to node n in OPEN
I h(n): estimated cost from state s(n) represented by n to goal

• Heuristic function h(n) provides the search with a sense of direction
I Quick and rough approximation of cost from s(n) to goal

• Simple but useful heuristic functions h(n):
I Navigation: Manhattan distance (ignores blocked cells)
I 15-puzzle: Sum of Manhattan distances (ignores interactions)
I Blocks: Twice number of blocks sitting on different block in goal
I Delivery: Sum of Manhattan distances, …

• A heuristic h is admissible if h(n) ≤ h∗(n) for all nodes n (states)

• Which heuristics above are admissible? Why?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 76/238

Heuristic search and heuristic functions

• Heuristic search algorithms use two functions:
I g(n): accumulated cost from root to node n in OPEN
I h(n): estimated cost from state s(n) represented by n to goal

• Heuristic function h(n) provides the search with a sense of direction
I Quick and rough approximation of cost from s(n) to goal

• Simple but useful heuristic functions h(n):
I Navigation: Manhattan distance (ignores blocked cells)
I 15-puzzle: Sum of Manhattan distances (ignores interactions)
I Blocks: Twice number of blocks sitting on different block in goal
I Delivery: Sum of Manhattan distances, …

• A heuristic h is admissible if h(n) ≤ h∗(n) for all nodes n (states)

• Which heuristics above are admissible? Why?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 76/238

Simplest heuristic search algorithm (not too good though)

Greedy search or Hill climbing (descending) search

1 Starting with s = s0,
2 Evaluate each action a ∈ A(s) as: Q(a, s) = c(a, s) + h(s′), where s′ = f(a, s)
3 Apply action a that minimizes Q(a, s)
4 Exit if s′ is goal, else go to 1 with s := s′

Greedy search is incomplete, even if extended with cycle checking. Yet:
3 It uses constant memory (if no cycle checks); or linear memory (cycle checks)
3 It’s a “real-time” algorithm; i.e., there is notion of current state
3 There is a simple way to fix incompleteness and non-optimality (!)

I Update the heuristic function h of parent when moving to child
I Resulting algorithm is Learning Real Time A* (LRTA*)
I LRTA* generalizes nicely to MDPs! (RTDP)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 77/238

Back to the general search scheme

Best First Search expands best nodes n with min f(n) (f(n) is the evaluation function)
• Select-Node Open: Returns node n in Open with min f(n)

• Add-Nodes New Old: Performs ordered merge

• Implementation: Open as Priority Queue

• Special cases
I Uniform cost/Dijkstra: f(n) = g(n)

I A*: f(n) = g(n) + h(n)

I WA*: f(n) = g(n) +Wh(n), W ≥ 1

I Greedy Best First: f(n) = h(n) (different than greedy search)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 78/238

Memory. Properties. Consistency

• All algorithms except DFS and its variants (below) store all nodes in memory.
• When nodes expanded, children looked up in Open and Closed “lists”.
• Duplicates prevented; only cheapest “copy” kept.

I Newly generated node n pruned, if there is a node n′ in OPEN or CLOSED that represents
same state s as n such that g(n) 6< g(n′).

I Yet, n′ pruned instead if g(n) < g(n′) (“reopened” if n′ CLOSED)

A* Good Properties

3 A* is optimal, yields cheapest solutions, if h admissible.
3 A* is optimal also in following sense: no other algorithm expands less # of nodes than

A* with same heuristic function (this doesn’t mean that A* is fastest!).
3 A* expands ‘less’ # of nodes with more informed heuristic: h2 more informed that h1

if 0 < h1(s) < h2(s) ≤ h∗(s), for all s.
3 A* won’t re-open nodes if heuristic is consistent (monotonic); i.e.,

h(n) ≤ c(n, n′) + h(n′) for child n′ of n (f doesn’t decrease along any path).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 79/238

Variants of Depth-First Search (DFS)
Bounded DFS
• Like normal DFS but uses a bound B on solution cost
• Node n pruned (not added to OPEN), if g(n) > B
• Incomplete if no solution with cost < B

Iterative Deepening (ID)

• Calls Bounded DFS with bound B1 = 0 in first iteration
• Node n pruned in iteration i if g(n) > Bi

• If no solution found in iteration i, Bounded DFS called with bound Bi+1 = mink g(nk),
over nodes nk pruned in iteration i

Iterative Deepening A* (IDA*)

• Like ID but uses evaluation function f(n) = g(n) + h(n) instead of g(n)
• Node n pruned in iteration i if f(n) = g(n) + h(n) > Bi

• B0 = h(n0) and Bi+1 = mink f(nk), over nodes nk pruned in iteration i
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 80/238

Properties of Algorithms

• Completeness: whether guaranteed to find solution
• Optimality: whether solution guaranteed optimal
• Time Complexity: how time increases with size
• Space Complexity: how space increases with size

DFS BrFS ID A* HC IDA* B&B
Complete Yes* Yes Yes Yes No Yes Yes
Optimal No Yes∗ Yes Yes No Yes Yes
Time bD bd bd bd ∞ bd bD

Space b · d bd b · d bd b b · d b · d

– Parameters: d is optimal solution depth; b is branching factor; D >> d
– BrFS optimal when costs are uniform; DFS complete with cyclic checking
– A*/IDA* optimal when h is admissible; h ≤ h∗

– B&B refers to Depth-first search Branch-and-Bound …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 81/238

Practical Issues: Search in Large Spaces

1 Exponential-memory algorithms like A* not feasible in very large spaces.

2 Time and memory requirements can be lowered significantly by multiplying heuristic
term h(n) by a constant W > 1 (WA* – Weighted A*).

I Solutions no longer optimal but at most W times from optimal (if h admissible).

3 For very large spaces, only feasible optimal algorithms are linear-memory algorithms
such as IDA* and B&B.

4 Optimal solutions have been reported to problems with huge state spaces such
24-puzzle, Rubik’s cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 1020, using IDA* and
pattern-database heuristics.

5 Recent developments combine deep reinforcement learning with search: learn
value/heuristic functions, learn policies, learn general policies, …

6 Resulting solutions not necessarily optimal though (or not easy to prove so).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 82/238

Practical Issues: Search in Large Spaces

1 Exponential-memory algorithms like A* not feasible in very large spaces.
2 Time and memory requirements can be lowered significantly by multiplying heuristic

term h(n) by a constant W > 1 (WA* – Weighted A*).

I Solutions no longer optimal but at most W times from optimal (if h admissible).
3 For very large spaces, only feasible optimal algorithms are linear-memory algorithms

such as IDA* and B&B.
4 Optimal solutions have been reported to problems with huge state spaces such

24-puzzle, Rubik’s cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 1020, using IDA* and
pattern-database heuristics.

5 Recent developments combine deep reinforcement learning with search: learn
value/heuristic functions, learn policies, learn general policies, …

6 Resulting solutions not necessarily optimal though (or not easy to prove so).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 82/238

Practical Issues: Search in Large Spaces

1 Exponential-memory algorithms like A* not feasible in very large spaces.
2 Time and memory requirements can be lowered significantly by multiplying heuristic

term h(n) by a constant W > 1 (WA* – Weighted A*).
I Solutions no longer optimal but at most W times from optimal (if h admissible).

3 For very large spaces, only feasible optimal algorithms are linear-memory algorithms
such as IDA* and B&B.

4 Optimal solutions have been reported to problems with huge state spaces such
24-puzzle, Rubik’s cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 1020, using IDA* and
pattern-database heuristics.

5 Recent developments combine deep reinforcement learning with search: learn
value/heuristic functions, learn policies, learn general policies, …

6 Resulting solutions not necessarily optimal though (or not easy to prove so).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 82/238

Practical Issues: Search in Large Spaces

1 Exponential-memory algorithms like A* not feasible in very large spaces.
2 Time and memory requirements can be lowered significantly by multiplying heuristic

term h(n) by a constant W > 1 (WA* – Weighted A*).
I Solutions no longer optimal but at most W times from optimal (if h admissible).

3 For very large spaces, only feasible optimal algorithms are linear-memory algorithms
such as IDA* and B&B.

4 Optimal solutions have been reported to problems with huge state spaces such
24-puzzle, Rubik’s cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 1020, using IDA* and
pattern-database heuristics.

5 Recent developments combine deep reinforcement learning with search: learn
value/heuristic functions, learn policies, learn general policies, …

6 Resulting solutions not necessarily optimal though (or not easy to prove so).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 82/238

Practical Issues: Search in Large Spaces

1 Exponential-memory algorithms like A* not feasible in very large spaces.
2 Time and memory requirements can be lowered significantly by multiplying heuristic

term h(n) by a constant W > 1 (WA* – Weighted A*).
I Solutions no longer optimal but at most W times from optimal (if h admissible).

3 For very large spaces, only feasible optimal algorithms are linear-memory algorithms
such as IDA* and B&B.

4 Optimal solutions have been reported to problems with huge state spaces such
24-puzzle, Rubik’s cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 1020, using IDA* and
pattern-database heuristics.

5 Recent developments combine deep reinforcement learning with search: learn
value/heuristic functions, learn policies, learn general policies, …

6 Resulting solutions not necessarily optimal though (or not easy to prove so).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 82/238

Practical Issues: Search in Large Spaces

1 Exponential-memory algorithms like A* not feasible in very large spaces.
2 Time and memory requirements can be lowered significantly by multiplying heuristic

term h(n) by a constant W > 1 (WA* – Weighted A*).
I Solutions no longer optimal but at most W times from optimal (if h admissible).

3 For very large spaces, only feasible optimal algorithms are linear-memory algorithms
such as IDA* and B&B.

4 Optimal solutions have been reported to problems with huge state spaces such
24-puzzle, Rubik’s cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 1020, using IDA* and
pattern-database heuristics.

5 Recent developments combine deep reinforcement learning with search: learn
value/heuristic functions, learn policies, learn general policies, …

6 Resulting solutions not necessarily optimal though (or not easy to prove so).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 82/238

Practical Issues: Search in Large Spaces

1 Exponential-memory algorithms like A* not feasible in very large spaces.
2 Time and memory requirements can be lowered significantly by multiplying heuristic

term h(n) by a constant W > 1 (WA* – Weighted A*).
I Solutions no longer optimal but at most W times from optimal (if h admissible).

3 For very large spaces, only feasible optimal algorithms are linear-memory algorithms
such as IDA* and B&B.

4 Optimal solutions have been reported to problems with huge state spaces such
24-puzzle, Rubik’s cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 1020, using IDA* and
pattern-database heuristics.

5 Recent developments combine deep reinforcement learning with search: learn
value/heuristic functions, learn policies, learn general policies, …

6 Resulting solutions not necessarily optimal though (or not easy to prove so).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 82/238

Learning Real Time A* (LRTA*)

• LRTA* is a very interesting real-time search algorithm (Korf 90)
• It’s like a hill-descending or greedy search, but it updates the heuristic V as it moves,

starting with V = h.

1 Evaluate each action a in s as: Q(a, s) = c(a, s) + V (s′)
2 Apply action a that minimizes Q(a, s)
3 Update V (s) to Q(a, s)
4 Exit if s′ is goal, else go to 1 with s := s′

• Two remarkable properties
I Each trial of LRTA gets eventually to the goal if space connected
I Repeated trials eventually get to the goal optimally, if h admissible!

• Generalizes well to stochastic actions (MDPs): RTDP

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 83/238

Iterative Width: IW

• IW(k) and IW are exploration algorithms (no heuristic h) that make use of the state
structure as given by set of Boolean state features F = {f1, . . . , fN}
I IW(1) is just breadth-first search that prunes states s that don’t make a feature fi true

for first time in the search
I IW(k) is IW(1) but over set F k made up of conjunctions of k features from F

I IW(k) expands up to Nk nodes and runs in polytime exp(2k)
I IW runs IW(1), IW(2), …, IW(k) sequentially until problem solved …

• IW is blind like DFS, BrFS, and ID but enumerates state space differently

• Many domains with exponential state space provably solved in polynomial time by
IW when using “natural” features
I Goals like on(b1, b2) in Blocks solvable by IW(2) if F captures locations and clear status of

blocks (Lipovetzky and G. 2012)
I Idea, width-based search, used in state-of-the-art classical planning algorithms

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 84/238

Heuristics: where they come from?

General idea for obtaining heuristics
Heuristic functions obtained as optimal cost functions of relaxed problems.
• Routing Finding: Manhattan distance or straight line.
• N-puzzle: # misplaced tiles or sum of Manhattan distances.
• Travelling Salesman Problem: Spanning Tree.

But:
1 how to get and solve suitable relaxations?
2 how to get heuristics automatically?

This is where (classical) planning comes to the rescue!
• state models S = 〈S, s0, SG, Act, A, f, c〉 expressed in compact form by means of

planning languages
.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 85/238

Heuristics: where they come from?

General idea for obtaining heuristics
Heuristic functions obtained as optimal cost functions of relaxed problems.
• Routing Finding: Manhattan distance or straight line.
• N-puzzle: # misplaced tiles or sum of Manhattan distances.
• Travelling Salesman Problem: Spanning Tree.

But:
1 how to get and solve suitable relaxations?
2 how to get heuristics automatically?

This is where (classical) planning comes to the rescue!
• state models S = 〈S, s0, SG, Act, A, f, c〉 expressed in compact form by means of

planning languages
.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 85/238

Heuristics: where they come from?

General idea for obtaining heuristics
Heuristic functions obtained as optimal cost functions of relaxed problems.
• Routing Finding: Manhattan distance or straight line.
• N-puzzle: # misplaced tiles or sum of Manhattan distances.
• Travelling Salesman Problem: Spanning Tree.

But:
1 how to get and solve suitable relaxations?
2 how to get heuristics automatically?

This is where (classical) planning comes to the rescue!
• state models S = 〈S, s0, SG, Act, A, f, c〉 expressed in compact form by means of

planning languages
.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 85/238

Heuristics: where they come from?

General idea for obtaining heuristics
Heuristic functions obtained as optimal cost functions of relaxed problems.
• Routing Finding: Manhattan distance or straight line.
• N-puzzle: # misplaced tiles or sum of Manhattan distances.
• Travelling Salesman Problem: Spanning Tree.

But:
1 how to get and solve suitable relaxations?
2 how to get heuristics automatically?

This is where (classical) planning comes to the rescue!
• state models S = 〈S, s0, SG, Act, A, f, c〉 expressed in compact form by means of

planning languages
.

AI Planning = Search
+ KR

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 85/238

Part 1: Classical Planning: Languages

1 Motivation

2 State Models and Search

3 Planning Languages

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 86/238

Part 1: Classical Planning: Languages

1 Motivation

2 State Models and Search

3 Planning Languages

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 86/238

Planning

• Planning is one of the oldest areas in AI; many ideas have been tried.
I A bit of history: first AI planners from late 50s: GPS (Simon and Newell)

• A planner is a general solver that accepts a problem description of a dynamic system
and computes a solution plan.

Problem =⇒ Planner =⇒ Plan
• Problem description encodes state model in a compact (and accessible) form.

• Planning Languages for encoding state models based on fragment of FOL
I Make room for objects and relations: STRIPS, ADL, PDDL, …

• Classical planning is “vanilla” planning:
I Known initial state and deterministic actions; discrete time, no other changes.

• Other planning models relax these assumptions:
I Incomplete information on the state; non-deterministic actions; multi-agent, etc.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 87/238

Planning

• Planning is one of the oldest areas in AI; many ideas have been tried.
I A bit of history: first AI planners from late 50s: GPS (Simon and Newell)

• A planner is a general solver that accepts a problem description of a dynamic system
and computes a solution plan.

Problem =⇒ Planner =⇒ Plan
• Problem description encodes state model in a compact (and accessible) form.

• Planning Languages for encoding state models based on fragment of FOL
I Make room for objects and relations: STRIPS, ADL, PDDL, …

• Classical planning is “vanilla” planning:
I Known initial state and deterministic actions; discrete time, no other changes.

• Other planning models relax these assumptions:
I Incomplete information on the state; non-deterministic actions; multi-agent, etc.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 87/238

State Model for Classical AI Planning

State model underlying classical planning: S = 〈S, s0, SG, Act, A, f, c〉 where:
• S is finite and discrete state space
• s0 is known initial state s0 ∈ S
• SG is subset of goal states, SG ⊆ S
• Act is finite set of actions
• A(s) is subset of actions applicable in each s ∈ S, A(s) ⊆ Act
• f is a deterministic transition function; successors s′ = f(a, s), a ∈ A(s)
• c is a positive action cost function; c(a, s) > 0

A solution or plan is a sequence of applicable actions a0, . . . , an that maps s0 into SG; i.e.
there is a state sequence s0, . . . , sn+1 such that ai ∈ A(si), si+1 = f(ai, si), and sn+1 ∈ SG,
i = 0, . . . , n.
A plan is optimal if it minimizes sum of action costs

∑
i=0,n c(ai, si)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 88/238

Basic Language for Classical Planning: STRIPS

• A (grounded) planning problem in STRIPS is a
tuple P = 〈F,O, I,G〉:
I F stands for set of all atoms (boolean variables)
I O stands for set of all operators (or actions)
I I ⊆ F stands for initial situation
I G ⊆ F stands for goal situation

• Actions or operators o ∈ O represented by:
I the Add list Add(o) ⊆ F : atoms that become true
I the Delete list Del(o) ⊆ F : atoms that stop being

true (i.e., become false)
I the Precondition list Pre(o) ⊆ F : atoms that must

be true for action to apply/execute Stanford Research Institute
Problem Solver

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 89/238

STRIPS for SRI Shakey (1966-1972)

Check this video for a demo
of Shakey’s capabilities.

Shakey was inducted into Carnegie Mellon University’s Robot Hall of
Fame in 2004 alongside such notables as ASIMO and C-3PO.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 90/238

https://www.sri.com/hoi/shakey-the-robot/
https://www.youtube.com/watch?v=GmU7SimFkpU
https://en.wikipedia.org/wiki/Shakey_the_robot

From Language to Models

S(P): state model of planning problem P

Problem P = 〈F,O, I,G〉 determines/induces model S(P) = 〈S, s0, SG, Act, A, f, c〉:
1 the states s ∈ S are collections of atoms from F (what is |S|?)
2 the initial state s0 is I
3 the set SG of goal states s are those that G ⊆ s
4 the set of actions Act is Act = O,
5 the actions a in A(s) are those such that Pre(a) ⊆ s
6 the transition function f is such that s′ = f(a, s) = (s \ Del(a)) ∪ Add(a)
7 action costs c(a, s) are all 1

Note:
• (Optimal) Solution of P is (optimal) solution of S(P)
• Language extensions often convenient (e.g., negation and conditional effects)

I some required for describing richer models (costs, probabilities, duration, …).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 91/238

Example: Simple Problem in STRIPS

Problem P = 〈F, I,O,G〉 where:
• F = {p, q, r}
• I = {p}
• G = {q, r}
• O has two actions a and b such that:

I Pre(a) = {p} , Add(a) = {q}, Del(a) = {}
I Pre(b) = {q} , Add(b) = {r}, Del(b) = {q}

Question-Circle Questions

1 How many states?
2 What is S(P)?
3 How many states are reachable from the initial state?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 92/238

(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().

• Initial state:
{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.

• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)

Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 93/238

https://tinyurl.com/yq37znq9

(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.

• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)

Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 93/238

https://tinyurl.com/yq37znq9

(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.
• Goal: {on(E,C), on(C,A), on(B,D)}.

• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)

Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 93/238

https://tinyurl.com/yq37znq9

(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.
• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)

Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 93/238

https://tinyurl.com/yq37znq9

(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.
• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)

Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 93/238

https://tinyurl.com/yq37znq9

(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.
• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)
Pre: {armEmpty(), clear(x), onTable(x)}

Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 93/238

https://tinyurl.com/yq37znq9

(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.
• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)
Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}

Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 93/238

https://tinyurl.com/yq37znq9

(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.
• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)
Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 93/238

https://tinyurl.com/yq37znq9

(Oh no it’s) The Blocksworld (operators)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Action Precondition Add Delete

pickup(x) {armEmpty(), clear(x), onTable(x)} {holding(x)} {armEmpty(), clear(x), onTable(x)}

putdown(x)

{holding(x)} {armEmpty(), clear(x), onTable(x)} {holding(x)}

unstack(x, y)

{armEmpty(x), clear(x), on(x, y)} {holding(x), clear(x)} {armEmpty(), on(x, y), clear(x)}

stack(x, y)

{holding(x), clear(y)} {on(x, y), armEmpty(), clear(x)} {holding(x), clear(y)}

Question-Circle What is a successful plan for the above problem?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 94/238

(Oh no it’s) The Blocksworld (operators)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Action Precondition Add Delete

pickup(x) {armEmpty(), clear(x), onTable(x)} {holding(x)} {armEmpty(), clear(x), onTable(x)}

putdown(x) {holding(x)}

{armEmpty(), clear(x), onTable(x)} {holding(x)}

unstack(x, y)

{armEmpty(x), clear(x), on(x, y)} {holding(x), clear(x)} {armEmpty(), on(x, y), clear(x)}

stack(x, y)

{holding(x), clear(y)} {on(x, y), armEmpty(), clear(x)} {holding(x), clear(y)}

Question-Circle What is a successful plan for the above problem?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 94/238

(Oh no it’s) The Blocksworld (operators)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Action Precondition Add Delete

pickup(x) {armEmpty(), clear(x), onTable(x)} {holding(x)} {armEmpty(), clear(x), onTable(x)}

putdown(x) {holding(x)} {armEmpty(), clear(x), onTable(x)}

{holding(x)}

unstack(x, y)

{armEmpty(x), clear(x), on(x, y)} {holding(x), clear(x)} {armEmpty(), on(x, y), clear(x)}

stack(x, y)

{holding(x), clear(y)} {on(x, y), armEmpty(), clear(x)} {holding(x), clear(y)}

Question-Circle What is a successful plan for the above problem?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 94/238

(Oh no it’s) The Blocksworld (operators)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Action Precondition Add Delete

pickup(x) {armEmpty(), clear(x), onTable(x)} {holding(x)} {armEmpty(), clear(x), onTable(x)}

putdown(x) {holding(x)} {armEmpty(), clear(x), onTable(x)} {holding(x)}

unstack(x, y)

{armEmpty(x), clear(x), on(x, y)} {holding(x), clear(x)} {armEmpty(), on(x, y), clear(x)}

stack(x, y)

{holding(x), clear(y)} {on(x, y), armEmpty(), clear(x)} {holding(x), clear(y)}

Question-Circle What is a successful plan for the above problem?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 94/238

(Oh no it’s) The Blocksworld (operators)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Action Precondition Add Delete

pickup(x) {armEmpty(), clear(x), onTable(x)} {holding(x)} {armEmpty(), clear(x), onTable(x)}

putdown(x) {holding(x)} {armEmpty(), clear(x), onTable(x)} {holding(x)}

unstack(x, y) {armEmpty(x), clear(x), on(x, y)}

{holding(x), clear(x)} {armEmpty(), on(x, y), clear(x)}

stack(x, y)

{holding(x), clear(y)} {on(x, y), armEmpty(), clear(x)} {holding(x), clear(y)}

Question-Circle What is a successful plan for the above problem?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 94/238

(Oh no it’s) The Blocksworld (operators)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Action Precondition Add Delete

pickup(x) {armEmpty(), clear(x), onTable(x)} {holding(x)} {armEmpty(), clear(x), onTable(x)}

putdown(x) {holding(x)} {armEmpty(), clear(x), onTable(x)} {holding(x)}

unstack(x, y) {armEmpty(x), clear(x), on(x, y)} {holding(x), clear(x)}

{armEmpty(), on(x, y), clear(x)}

stack(x, y)

{holding(x), clear(y)} {on(x, y), armEmpty(), clear(x)} {holding(x), clear(y)}

Question-Circle What is a successful plan for the above problem?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 94/238

(Oh no it’s) The Blocksworld (operators)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Action Precondition Add Delete

pickup(x) {armEmpty(), clear(x), onTable(x)} {holding(x)} {armEmpty(), clear(x), onTable(x)}

putdown(x) {holding(x)} {armEmpty(), clear(x), onTable(x)} {holding(x)}

unstack(x, y) {armEmpty(x), clear(x), on(x, y)} {holding(x), clear(x)} {armEmpty(), on(x, y), clear(x)}

stack(x, y)

{holding(x), clear(y)} {on(x, y), armEmpty(), clear(x)} {holding(x), clear(y)}

Question-Circle What is a successful plan for the above problem?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 94/238

(Oh no it’s) The Blocksworld (operators)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Action Precondition Add Delete

pickup(x) {armEmpty(), clear(x), onTable(x)} {holding(x)} {armEmpty(), clear(x), onTable(x)}

putdown(x) {holding(x)} {armEmpty(), clear(x), onTable(x)} {holding(x)}

unstack(x, y) {armEmpty(x), clear(x), on(x, y)} {holding(x), clear(x)} {armEmpty(), on(x, y), clear(x)}

stack(x, y) {holding(x), clear(y)}

{on(x, y), armEmpty(), clear(x)} {holding(x), clear(y)}

Question-Circle What is a successful plan for the above problem?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 94/238

(Oh no it’s) The Blocksworld (operators)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Action Precondition Add Delete

pickup(x) {armEmpty(), clear(x), onTable(x)} {holding(x)} {armEmpty(), clear(x), onTable(x)}

putdown(x) {holding(x)} {armEmpty(), clear(x), onTable(x)} {holding(x)}

unstack(x, y) {armEmpty(x), clear(x), on(x, y)} {holding(x), clear(x)} {armEmpty(), on(x, y), clear(x)}

stack(x, y) {holding(x), clear(y)} {on(x, y), armEmpty(), clear(x)}

{holding(x), clear(y)}

Question-Circle What is a successful plan for the above problem?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 94/238

(Oh no it’s) The Blocksworld (operators)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Action Precondition Add Delete

pickup(x) {armEmpty(), clear(x), onTable(x)} {holding(x)} {armEmpty(), clear(x), onTable(x)}

putdown(x) {holding(x)} {armEmpty(), clear(x), onTable(x)} {holding(x)}

unstack(x, y) {armEmpty(x), clear(x), on(x, y)} {holding(x), clear(x)} {armEmpty(), on(x, y), clear(x)}

stack(x, y) {holding(x), clear(y)} {on(x, y), armEmpty(), clear(x)} {holding(x), clear(y)}

Question-Circle What is a successful plan for the above problem?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 94/238

(Oh no it’s) The Blocksworld (operators)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Action Precondition Add Delete

pickup(x) {armEmpty(), clear(x), onTable(x)} {holding(x)} {armEmpty(), clear(x), onTable(x)}

putdown(x) {holding(x)} {armEmpty(), clear(x), onTable(x)} {holding(x)}

unstack(x, y) {armEmpty(x), clear(x), on(x, y)} {holding(x), clear(x)} {armEmpty(), on(x, y), clear(x)}

stack(x, y) {holding(x), clear(y)} {on(x, y), armEmpty(), clear(x)} {holding(x), clear(y)}

Question-Circle What is a successful plan for the above problem?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 94/238

(Oh no it’s) The Blocksworld (plans)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Question-Circle What is a successful plan for the above problem?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(B), stack(B,D), pickup(E), stack(E,C)D

Question-Circle What about this plan?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(E),
stack(E,C), pickup(D), stack(D,E), pickup(B), stack(B,D)D

Initial State

E A B C

D

Goal

A

C

E

D

B

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 95/238

(Oh no it’s) The Blocksworld (plans)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Question-Circle What is a successful plan for the above problem?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(B), stack(B,D), pickup(E), stack(E,C)D

Question-Circle What about this plan?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(E),
stack(E,C), pickup(D), stack(D,E), pickup(B), stack(B,D)D

Initial State

E A B C

D

Goal

A

C

E

D

B

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 95/238

(Oh no it’s) The Blocksworld (plans)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Question-Circle What is a successful plan for the above problem?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(B), stack(B,D), pickup(E), stack(E,C)D

Question-Circle What about this plan?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(E),
stack(E,C), pickup(D), stack(D,E), pickup(B), stack(B,D)

D
Initial State

E A B C

D

Goal

A

C

E

D

B

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 95/238

(Oh no it’s) The Blocksworld (plans)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Question-Circle What is a successful plan for the above problem?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(B), stack(B,D), pickup(E), stack(E,C)D

Question-Circle What about this plan?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(E),
stack(E,C), pickup(D), stack(D,E), pickup(B), stack(B,D)D

Initial State

E A B C

D

Goal

A

C

E

D

B

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 95/238

(Oh no it’s) The Blocksworld (plans)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Question-Circle What is a successful plan for the above problem?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(B), stack(B,D), pickup(E), stack(E,C)D

Question-Circle What about this plan?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(E),
stack(E,C), pickup(D), stack(D,E), pickup(B), stack(B,D)D

Initial State

E A B C

D

Goal

A

C

E

D

B

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 95/238

(Oh no it’s) The Blocksworld (fixed!)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D), onTable(A), onTable(D)}

Question-Circle What is a successful plan for the above problem?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(B), stack(B,D), pickup(E), stack(E,C)D

Question-Circle What about this plan?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(E),
stack(E,C), pickup(D), stack(D,E), pickup(B), stack(B,D)

6

Initial State

E A B C

D

Goal

A

C

E

D

B

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 96/238

How to “write” STRIPS planning problems?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 97/238

PDDL: A Standard Syntax for Classical Planning Problems

• PDDL stands for Planning Domain Description Language

• Developed for International Planning Competetion (IPC); evolving since 1998.

• PDDL specifies syntax for problems P = 〈F, I,O,G〉 supporting STRIPS, variables,
types, and much more...

Problem in PDDL =⇒ Planner =⇒ Plan

• Problems in PDDL specified in two parts:
1 Domain: general info on the system (e.g., features, actions).
2 Instance: specifics of a problem (e.g., exact blocks).

• Many problem instances for the same domain.

• In IPC, planners are evaluated over unseen problems encoded in PDDL.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 98/238

https://www.icaps-conference.org/competitions/

PDDL: A Standard Syntax for Classical Planning Problems

• PDDL stands for Planning Domain Description Language

• Developed for International Planning Competetion (IPC); evolving since 1998.

• PDDL specifies syntax for problems P = 〈F, I,O,G〉 supporting STRIPS, variables,
types, and much more...

Problem in PDDL =⇒ Planner =⇒ Plan

• Problems in PDDL specified in two parts:
1 Domain: general info on the system (e.g., features, actions).
2 Instance: specifics of a problem (e.g., exact blocks).

• Many problem instances for the same domain.

• In IPC, planners are evaluated over unseen problems encoded in PDDL.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 98/238

https://www.icaps-conference.org/competitions/

PDDL Quick Facts

PDDL is not a propositional language:
• Representation is lifted: using object
variables to be instantiated from a finite
set of objects. (Similar to predicate logic)

• Predicates to be instantiated with objects.
/ at(?p, ?r): package ?p is at room ?r

• Action schemas parameterized by objects.
/ pickup(?x): pickup block ?x

A PDDL planning task comes in two parts:
1 Domain: predicates, operators, types.
2 Problem: objects, initial state, goal

condition.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 99/238

PDDL Quick Facts

PDDL is not a propositional language:
• Representation is lifted: using object
variables to be instantiated from a finite
set of objects. (Similar to predicate logic)

• Predicates to be instantiated with objects.
/ at(?p, ?r): package ?p is at room ?r

• Action schemas parameterized by objects.
/ pickup(?x): pickup block ?x

A PDDL planning task comes in two parts:
1 Domain: predicates, operators, types.
2 Problem: objects, initial state, goal

condition.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 99/238

Example: Blocks World Domain in STRIPS (PDDL Syntax)

(define (domain blocks)
(:requirements :strips)
(:action pick_up

:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty)) (holding ?x)))

(:action put_down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x) (handempty) (on ?x ?y)))

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (clear ?y) (holding ?x) (not (on ?x ?y))

(not (clear ?x)) (not (handempty))))

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 100/238

An instance of blocks world in PDDL

Initial State

E A B C

D

Goal

A

C

E

D

B

(define (problem blocks-example)
(:domain blocks)
(:objects A B C D E)
(:init (clear E) (clear A) (clear B) (clear D) (handempty)

(ontable E) (ontable A) (ontable B) (ontable C) (on D C))
(:goal (and (on C A) (on E C) (on B D))))

or better:
(define (problem blocks-example)

(:domain blocks)
(:objects A B C D E)
(:init (clear E) (clear A) (clear B) (clear D) (handempty)

(ontable E) (ontable A) (ontable B) (ontable C) (on D C))
(:goal (and (on C A) (on E C) (on B D) (ontable A) (ontable D))))

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 101/238

An instance of blocks world in PDDL

Initial State

E A B C

D

Goal

A

C

E

D

B

(define (problem blocks-example)
(:domain blocks)
(:objects A B C D E)
(:init (clear E) (clear A) (clear B) (clear D) (handempty)

(ontable E) (ontable A) (ontable B) (ontable C) (on D C))
(:goal (and (on C A) (on E C) (on B D))))

or better:
(define (problem blocks-example)

(:domain blocks)
(:objects A B C D E)
(:init (clear E) (clear A) (clear B) (clear D) (handempty)

(ontable E) (ontable A) (ontable B) (ontable C) (on D C))
(:goal (and (on C A) (on E C) (on B D) (ontable A) (ontable D))))

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 101/238

Example: 8-Puzzle in PDDL
(define (domain tile)

(:requirements :strips :typing :equality)
(:types tile position)
(:constants blank - tile)
(:predicates (at ?t - tile ?x - position ?y - position)

(inc ?p - position ?pp - position)
(dec ?p - position ?pp - position))

(:action move-up
:parameters (?t - tile ?px - position ?py - position ?bx - position ?by - position)
:precondition (and (= ?px ?bx) (dec ?by ?py) (not (= ?t blank)) ...)
:effect (and (not (at blank ?bx ?by)) (not (at ?t ?px ?py))

(at blank ?px ?py) (at ?t ?bx ?by)))
(:action move-down

:parameters ...)
(:action move-left

:parameters ...)
...

(define (problem eight_tile)
(:domain tile)
(:objects t1 t2 t3 t4 t5 t6 t7 t8 - tile p1 p2 p3 - position)
(:init (inc p1 p2) (inc p2 p3) (dec p3 p2) (dec p2 p1)

(at blank p1 p1) (at t1 p2 p1) (at t2 p3 p1) (at t3 p1 p2) ..)
(:goal (and (at t8 p1 p1) (at t7 p2 p1) (at t6 p3 p1) ..)))

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 102/238

Example: 2-Gripper Problem in PDDL
An autonomous robot moves picks/drops the balls in two rooms with its arms. Check post.
(define (domain gripper)

(:requirements :typing)
(:types room ball gripper)
(:constants left right - gripper)
(:predicates (at-robot ?r - room)(at ?b - ball ?r - room)(free ?g - gripper)

(carry ?o - ball ?g - gripper))
(:action move

:parameters (?from ?to - room)
:precondition (at-robot ?from)
:effect (and (at-robot ?to) (not (at-robot ?from))))

(:action pick
:parameters (?obj - ball ?room - room ?gripper - gripper)
:precondition (and (at ?obj ?room) (at-robot ?room) (free ?gripper))
:effect (and (carry ?obj ?gripper) (not (at ?obj ?room)) (not (free ?gripper))))

(:action drop
:parameters (?obj - ball ?room - room ?gripper - gripper)
:precondition (and (carry ?obj ?gripper) (at-robot ?room))
:effect (and (at ?obj ?room) (free ?gripper) (not (carry ?obj ?gripper)))))

(define (problem gripper2)
(:domain gripper)
(:objects roomA roomB - room Ball1 Ball2 - ball)
(:init (at-robot roomA) (free left) (free right) (at Ball1 roomA)(at Ball2 roomA))
(:goal (and (at Ball1 roomB) (at Ball2 roomB))))

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 103/238

https://medium.com/@hughiephan/gripper-problem-with-ai-planning-27289a47e473

Example: Visitall Domain in PDDL
(define (domain grid-visit-all) ;;; Visit all cells in a grid

(:requirements :strips)
(:predicates (connected ?x ?y) (at-robot ?x) (visited ?x))

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at-robot ?curpos) (connected ?curpos ?nextpos))
:effect (and (at-robot ?nextpos) (not (at-robot ?curpos)) (visited ?nextpos))))

(define (problem grid -2)
(:domain grid-visit-all)
(:objects loc-x0-y0 loc-x0-y1 loc-x1-y0 loc-x1-y1)
(:init (at-robot loc-x0-y0) (visited loc-x0-y0) (connected loc-x0-y0 loc-x1-y0)

(connected loc-x0-y0 loc-x0-y1) (connected loc-x0-y1 loc-x0-y0)
(connected loc-x0-y1 loc-x1-y1) (connected loc-x1-y0 loc-x1-y1)
(connected loc-x1-y0 loc-x0-y0) (connected loc-x1-y1 loc-x1-y0)
(connected loc-x1-y1 loc-x0-y1))

(:goal (and (visited loc-x0-y0) (visited loc-x0-y1)
(visited loc-x0-y2) (visited loc-x0-y3))))

Exclamation-Triangle The grid needs to be represented in PDDL:
• one object per cell (e.g., loc-x0-y0, loc-x0-y1, etc.)
• adjacency relations between cells (e.g., (connected loc-x0-y0 loc-x1-y0))

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 104/238

Example: Logistics in STRIPS PDDL
There are trucks and airplanes that can move
packages between different citites and airports.
The goal is to deliver packages to their
destinations.
More info here; planning domain here

(define (domain logistics)
(:requirements :strips :typing :equality)
(:types airport - location truck airplane - vehicle vehicle packet - thing ..)
(:predicates (loc-at ?x - location ?y - city) (at ?x - thing ?y - location) ...)
(:action load

:parameters (?x - packet ?y - vehicle ?z - location)
:precondition (and (at ?x ?z) (at ?y ?z))
:effect (and (not (at ?x ?z)) (in ?x ?y)))

(:action unload ..)
(:action drive

:parameters (?x - truck ?y - location ?z - location ?c - city)
:precondition (and (loc-at ?z ?c) (loc-at ?y ?c) (not (= ?z ?y)) (at ?x ?z))
:effect (and (not (at ?x ?z)) (at ?x ?y)))

...

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 105/238

https://pantelis.github.io/aiml-common/lectures/planning/task-planning/pddl/manufacturing/
https://editor.planning.domains/#read_session=CYXciTR40G

Example: Logistics in STRIPS PDDL

There are trucks and airplanes that can move
packages between different citites and airports.
The goal is to deliver packages to their
destinations.
More info here; planning domain here

(define (problem log3_2)
(:domain logistics)
(:objects packet1 packet2 ... - packet

truck1 truck2 truck3 ... - truck
city1 city2 ... - city ...)

(:init (at packet1 office1)
(at packet2 office3)
(at truck9 city7 -1) ...)

(:goal (and (at packet1 office2)
(at packet2 office2)

...)))

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 105/238

https://pantelis.github.io/aiml-common/lectures/planning/task-planning/pddl/manufacturing/
https://editor.planning.domains/#read_session=CYXciTR40G
https://editor.planning.domains/#read_session=CYXciTR40G

Manufactoring Robot Planning in PDDL

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 106/238

https://pantelis.github.io/aiml-common/lectures/planning/task-planning/pddl/manufacturing/

PDDL @ ROS Robotics

https://plansys2.github.io/
https:

//kcl-planning.github.io/ROSPlan/
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 107/238

https://plansys2.github.io/
https://plansys2.github.io/
https://plansys2.github.io/
https://kcl-planning.github.io/ROSPlan/
https://kcl-planning.github.io/ROSPlan/
https://kcl-planning.github.io/ROSPlan/
https://kcl-planning.github.io/ROSPlan/

Grounding

PDDL encoding uses variables on predicates and action schemas.
• variables replaced by constants of given types – avoids repetition
• name start with ?, e.g., ?p for package, ?r for room, etc.

Process of replacing variables by constants, called “instantiation” or “grounding”.
• Grounded on(?x, ?y): on(A,A), on(A,B), on(B,A), on(A,C), …

• Grounding actions obtained by replacing variables by constants of corresponding type

• Note that instantiation above yields actions like stack(A,A) and unstack(C,C)
I To avoid such instances, one can add equality or inequality preconditions such as ?r1 6=?r2

that would avoid instantiations where variables ?r1 and ?r2 replaced by same constant.

• Specialized “grounding systems” are used.

• Grounded instance is (much) larger than original one (but easier to solve!).
Question-Circle How large? What does it depends on?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 108/238

Grounding

PDDL encoding uses variables on predicates and action schemas.
• variables replaced by constants of given types – avoids repetition
• name start with ?, e.g., ?p for package, ?r for room, etc.

Process of replacing variables by constants, called “instantiation” or “grounding”.
• Grounded on(?x, ?y): on(A,A), on(A,B), on(B,A), on(A,C), …

• Grounding actions obtained by replacing variables by constants of corresponding type

• Note that instantiation above yields actions like stack(A,A) and unstack(C,C)
I To avoid such instances, one can add equality or inequality preconditions such as ?r1 6=?r2

that would avoid instantiations where variables ?r1 and ?r2 replaced by same constant.

• Specialized “grounding systems” are used.

• Grounded instance is (much) larger than original one (but easier to solve!).
Question-Circle How large? What does it depends on?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 108/238

Grounding

PDDL encoding uses variables on predicates and action schemas.
• variables replaced by constants of given types – avoids repetition
• name start with ?, e.g., ?p for package, ?r for room, etc.

Process of replacing variables by constants, called “instantiation” or “grounding”.
• Grounded on(?x, ?y): on(A,A), on(A,B), on(B,A), on(A,C), …

• Grounding actions obtained by replacing variables by constants of corresponding type

• Note that instantiation above yields actions like stack(A,A) and unstack(C,C)
I To avoid such instances, one can add equality or inequality preconditions such as ?r1 6=?r2

that would avoid instantiations where variables ?r1 and ?r2 replaced by same constant.

• Specialized “grounding systems” are used.

• Grounded instance is (much) larger than original one (but easier to solve!).
Question-Circle How large? What does it depends on?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 108/238

PDDL in VSCode!
Install PDDL Extension by Jan Dolejsi (Extension Id: jan-dolejsi.pddl)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 109/238

https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl
https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl

Main Selling Points...

1 Generality.

2 Accessibility.

3 Explainable.

4 Elaboration tolerant.

5 Flexibility.

6 Autonomy.

7 Rapid prototyping.

8 Declarative.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 110/238

Blocks World tutorial in VSCODE

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 111/238

https://youtu.be/_NOVa4i7Us8?si=--6rp89bLYCw8gb3

Challenge: Smart Home Planning
An intelligent robot can perform basic actions in a smart house such as
turning on lights, setting room thermostats, and opening/locking doors.
Each device (e.g., lights, thermostats, doors) is associated with a specific
room, and actions are conditioned on the type and locations of the
device and robot. The domain includes predicates to represent the state of
the environment (e.g., whether a light is on or a door is open or locked) and
enables planning agents to achieve goals like preparing a room for occupancy
or securing the house before bedtime.

(define (domain smart-home)
(:requirements :strips :typing)
(:types room device)
(:predicates

(robotAt ?x)
(light-on ?r - room)
(thermostat -set ?r - room)
(door-locked ?d - device)
(door-open ?d - device)
(in-room ?d - device ?r - room)
(is-light ?d - device)
(is-thermostat ?d - device)
(is-door ?d - device))

Complete this action:
(:action open-door

:parameters (?d - device)
:precondition ...
:effect ...

)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 112/238

Challenge: Smart Home Planning
An intelligent robot can perform basic actions in a smart house such as
turning on lights, setting room thermostats, and opening/locking doors.
Each device (e.g., lights, thermostats, doors) is associated with a specific
room, and actions are conditioned on the type and locations of the
device and robot. The domain includes predicates to represent the state of
the environment (e.g., whether a light is on or a door is open or locked) and
enables planning agents to achieve goals like preparing a room for occupancy
or securing the house before bedtime.

(define (domain smart-home)
(:requirements :strips :typing)
(:types room device)
(:predicates

(robotAt ?x)
(light-on ?r - room)
(thermostat -set ?r - room)
(door-locked ?d - device)
(door-open ?d - device)
(in-room ?d - device ?r - room)
(is-light ?d - device)
(is-thermostat ?d - device)
(is-door ?d - device))

Complete this action:
(:action open-door

:parameters (?d - device)
:precondition (and (is-door ?d) (at ?d)

(not (door-locked ?d)))
:effect (and (door-open ?d)))

D
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 112/238

Challenge: Smart Home Planning
An intelligent robot can perform basic actions in a smart house such as
turning on lights, setting room thermostats, and opening/locking doors.
Each device (e.g., lights, thermostats, doors) is associated with a specific
room, and actions are conditioned on the type and locations of the
device and robot. The domain includes predicates to represent the state of
the environment (e.g., whether a light is on or a door is open or locked) and
enables planning agents to achieve goals like preparing a room for occupancy
or securing the house before bedtime.

(define (domain smart-home)
(:requirements :strips :typing)
(:types room device)
(:predicates

(robotAt ?x)
(light-on ?r - room)
(thermostat -set ?r - room)
(door-locked ?d - device)
(door-open ?d - device)
(in-room ?d - device ?r - room)
(is-light ?d - device)
(is-thermostat ?d - device)
(is-door ?d - device))

Complete this action:
(:action toggle-light

:parameters ...
:precondition ...
:effect ...

)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 112/238

Challenge: Smart Home Planning
An intelligent robot can perform basic actions in a smart house such as
turning on lights, setting room thermostats, and opening/locking doors.
Each device (e.g., lights, thermostats, doors) is associated with a specific
room, and actions are conditioned on the type and locations of the
device and robot. The domain includes predicates to represent the state of
the environment (e.g., whether a light is on or a door is open or locked) and
enables planning agents to achieve goals like preparing a room for occupancy
or securing the house before bedtime.

(define (domain smart-home)
(:requirements :strips :typing)
(:types room device)
(:predicates

(robotAt ?x)
(light-on ?r - room)
(thermostat -set ?r - room)
(door-locked ?d - device)
(door-open ?d - device)
(in-room ?d - device ?r - room)
(is-light ?d - device)
(is-thermostat ?d - device)
(is-door ?d - device))

Complete this action:
(:action toggle-light

:parameters (?d - device)
:precondition (and (is-light ?d) (in-room ?d ?r))
:effect (and (when (light-on ?r)

(not (light-on ?r)))
(when (not (light-on ?r))

(light-on ?r))))

6 Conditional effects not part of STRIPS!
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 112/238

Smart-house by ChatGPT!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 113/238

The International Planning Competition (IPC)

Competition?

“Run competing planners on a set of benchmarks devised by the IPC organizers. Give awards
to the most effective planners.”

• 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018, 2019, 2020, 2023, ...

• PDDL [McDermott and others (1998); Fox and Long (2003); Hoffmann and Edelkamp (2005)]

• ≈ 40 domains, � 1000 instances, 74 (!!) planners in 2011

• Optimal track vs. satisficing track

• Various others: uncertainty, learning, . . .

http://ipc.icaps-conference.org/

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 114/238

http://ipc.icaps-conference.org/

PDDL beyond STRIPS

PDDL can express significantly more than what STRIPS
can model, including:

1 Conditional effects (ADL)
2 Universal quantification
3 Typed variables
4 Functions
5 Durative actions
6 Numeric fluents
7 Temporal planning
8 Planning with preferences
9 Axioms (derived predicates)
10 Continous processes PDDL+
11 Non-deterministic actions! later…

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 115/238

First PDDL @ IPC 1998

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 116/238

https://planning.wiki/_citedpapers/pddl1998.pdf

PDDL 2.1 @ IPC 2002

In the 2002 Competition, planners were
set the challenge of considering more
complicated domains and problems which
feature both temporal and numeric
considerations (scheduling and resources).
As a result, additions the language were
necessary to facilitate modelling time and
numbers:

• Level 1: STRIPS fragment.
• Level 2: numeric fluents, functions.
• Level 3: durative actions.
• Level 4: continuous effects/changes.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 117/238

https://jair.org/index.php/jair/article/view/10352/24759
https://jair.org/index.php/jair/article/view/10352/24759

PDDL+ for Continous Processes and Events
Related to Hybrid Automata!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 118/238

https://planning.wiki/_citedpapers/pddl1998.pdf

Planning Wiki

https://planning.wiki/

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 119/238

https://planning.wiki/
https://planning.wiki/

PDDL beyond STRIPS

PDDL Version Year Features
PDDL 1.0 1998 STRIPS, typing
PDDL 2.1 2003 Numeric fluents, durative actions, functions
PDDL 2.2 2004 Derived predicates, timed initial literals
PDDL 3.0 2005 Trajectory constraints, preferences
PDDL 3.1 2008 Functional fluents

PDDL+ 2006 Continuous processes/events (HAs)
PPDDL 2004 Probabilistic effects
FOND-PDDL 2006 Like PPDDL but also non-deterministic effects

Table: PDDL versions and their main features.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 120/238

https://planning.wiki/_citedpapers/pddl1998.pdf
https://jair.org/index.php/jair/article/view/10352
https://ipc06.icaps-conference.org/deterministic/booklet/deterministic00.pdf
https://ipc08.icaps-conference.org/deterministic/PddlExtension.html
https://jair.org/index.php/jair/article/view/10471
http://reports-archive.adm.cs.cmu.edu/anon/2004/CMU-CS-04-167.pdf
https://ipc06.icaps-conference.org/probabilistic/docs/cf-ipc-prob.pdf

Part II

Classical Planning: Methods

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 121/238

Part 2: Classical Planning: Methods

4 Complexity of Planning

5 Planning as heuristic search
Relaxations
Delete-relaxation h+

From h+ to hmax, hadd and hFF

State of the art classical planners

6 Planning as SAT

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 122/238

Part 2: Classical Planning: Methods

4 Complexity of Planning

5 Planning as heuristic search
Relaxations
Delete-relaxation h+

From h+ to hmax, hadd and hFF

State of the art classical planners

6 Planning as SAT

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 122/238

Algorithmic Problems in Planning

Satisficing Planning
Input: A planning task P = 〈F,O, I,G〉.
Output: A plan for P , or ‘unsolvable’ if no plan for P exists.

Optimal Planning
Input: A planning task P = 〈F,O, I,G〉.
Output: An optimal plan for P , or ‘unsolvable’ if no plan for P exists.

Observations:
• The successful techniques for either one of these are almost disjoint!
• Satisficing planning is much more effective in practice.
• Programs solving these problems are called (optimal) planners, planning systems, or

planning tools.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 123/238

Algorithmic Problems in Planning

Satisficing Planning
Input: A planning task P = 〈F,O, I,G〉.
Output: A plan for P , or ‘unsolvable’ if no plan for P exists.

Optimal Planning
Input: A planning task P = 〈F,O, I,G〉.
Output: An optimal plan for P , or ‘unsolvable’ if no plan for P exists.

Observations:
• The successful techniques for either one of these are almost disjoint!
• Satisficing planning is much more effective in practice.
• Programs solving these problems are called (optimal) planners, planning systems, or

planning tools.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 123/238

Decision Problems in Planning

PlanEx: Satisficing Planning
The problem of deciding, given a planning task P , whether or not there exists a plan for P .

PlanLen: Optimal Planning
The problem of deciding, given a planning task P and an integer B (bound), whether or not
there exists a plan for P of length at most B.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 124/238

Review of Complexity: P, NP and PSPACE

Turing Machine (TM)
Works on a tape consisting of tape cells, across which its R/W head moves. The machine has
internal states. There are transition rules specifying, given the current cell content and
internal state, what the subsequent internal state will be, and whether the R/W head moves
left or right or remains where it is. Some internal states are accepting (‘yes’; else ‘no’).

Thre Complexity Classes for Decision Problems

1 P: Decision problems for which there exists a deterministic TM that runs in time
polynomial (in the size of its input).

2 NP: Decision problems for which there exists a non-deterministic TM that runs in time
polynomial. Accepts if at least one of the possible runs accepts.

3 PSPACE: Decision problems for which there exists a deterministic TM that runs in
space polynomial in the size of its input.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 125/238

Planning is hard!

LOG
Time

LOG
Space

PTIME NPTIME

NP-C

co-
NP
TIM

E

PSPACE

EXPTIME

EXPSPACE

...
ELEMENTARY

...
2EXPTIME

R

Classical
Planning

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 126/238

Domain-Specific: PlanEx vs. PlanLen

• In general, both have the same complexity
(PSPACE-complete).

• Within particular applications, bounded length plan
existence (i.e., optimal planning) is often harder than
plan existence.

• This happens in many IPC benchmark domains.

• PlanLen is NP-complete while PlanEx is in P.
I For example: Blocksworld and Logistics.

Exclamation-Triangle In practice, optimal planning is (almost) never “easy”.

Initial State

E A B C

D

Goal

A

C

E

D

B

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 127/238

The Blocksworld is Hard?

Initial State

E A B C

D

Goal

A

C

E

D

B

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 128/238

The Blocksworld is Hard!

P

RAE

S

V

M

K

Y

G

O

T

J

Z

X

H

N

I

U

W

B

Q

L

F

D

C

Goal State

I

ODN

Z

X

C

V

B

M

A

S

F

G

H

H

J

K

L

Q

W

E

R

T

Y

U

Initial State

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 129/238

So, why all the fuss?

• n blocks, 1 hand.
• A single action either takes a block with the hand or puts a block
we’re holding onto some other block/the table.

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353

blocks states
9 4596553

10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921

State spaces may be huge. In particular, the state space is typically exponentially large in the
size of the factored (compact) specification of the problem.

In other words: Search problems typically are computationally hard (e.g., optimal
Blocksworld solving is NP-complete).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 130/238

So, why all the fuss?

• n blocks, 1 hand.
• A single action either takes a block with the hand or puts a block
we’re holding onto some other block/the table.

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353

blocks states
9 4596553

10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921

State spaces may be huge. In particular, the state space is typically exponentially large in the
size of the factored (compact) specification of the problem.

In other words: Search problems typically are computationally hard (e.g., optimal
Blocksworld solving is NP-complete).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 130/238

So, why all the fuss?

• n blocks, 1 hand.
• A single action either takes a block with the hand or puts a block
we’re holding onto some other block/the table.

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353

blocks states
9 4596553

10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921

State spaces may be huge. In particular, the state space is typically exponentially large in the
size of the factored (compact) specification of the problem.

In other words: Search problems typically are computationally hard (e.g., optimal
Blocksworld solving is NP-complete).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 130/238

So, why all the fuss?

• n blocks, 1 hand.
• A single action either takes a block with the hand or puts a block
we’re holding onto some other block/the table.

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353

blocks states
9 4596553

10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921

State spaces may be huge. In particular, the state space is typically exponentially large in the
size of the factored (compact) specification of the problem.

In other words: Search problems typically are computationally hard (e.g., optimal
Blocksworld solving is NP-complete).
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 130/238

Computation: how to solve STRIPS planning problems?

Key Key idea
Exploit two roles of language:

1 specification: concise and accessible model description.
2 computation: reveal useful heuristic information (structure).

Two traditional approaches: search vs. decomposition
1 explicit search of the state model S(P) direct but not effective until “recently”.
2 near decomposition of the planning problem thought a better idea.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 131/238

Computational Approaches to Classical Planning

• General Problem Solver (GPS) and Strips (50’s-70’s): mean-ends analysis,
decomposition, regression, …

• Partial Order (POCL) Planning (80’s): work on any open subgoal, resolve threats;
UCPOP 1992.

• Graphplan (1995 – 2000): build graph containing all possible parallel plans up to
certain length; then extract plan by searching the graph backward from Goal.

• SATPlan (1996 – …): map planning problem given horizon into SAT problem; use
state-of-the-art SAT solver.

• Heuristic Search Planning (1996 – …): search state space S(P) with heuristic function
h extracted from problem P .

• Model Checking Planning (1998 – …): search state space S(P) with ‘symbolic’
Breadth first search where sets of states represented by formulas implemented by BDDs …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 132/238

State of the Art in Classical Planning

• Significant progress since Graphplan.

• Empirical methodology:
1 standard PDDL language
2 planners and benchmarks available; competitions
3 focus on performance and scalability

• Large problems solved (non-optimally).

• Different formulations and ideas
1 Planning as Heuristic Search.
2 Planning as SAT.
3 Other: Local Search (LPG), Monte-Carlo Search (Arvand), …

We’ll focus on 1 mainly, and partially on 2.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 133/238

Part 2: Classical Planning: Methods

4 Complexity of Planning

5 Planning as heuristic search
Relaxations
Delete-relaxation h+

From h+ to hmax, hadd and hFF

State of the art classical planners

6 Planning as SAT

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 134/238

Part 2: Classical Planning: Methods

4 Complexity of Planning

5 Planning as heuristic search
Relaxations
Delete-relaxation h+

From h+ to hmax, hadd and hFF

State of the art classical planners

6 Planning as SAT

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 134/238

Computation: How to Solve Classical Planning Problems?

• Planning is one of the oldest areas in AI; many ideas have been tried
I A bit of history: first AI planners from late 50s: GPS (Simon and Newell)

Problem =⇒ Planner =⇒ Plan

• We focus on two of the ideas that scale up best computationally:
1 Planning as Heuristic Search.
2 Planning as SAT.

• These methods are able to solve problems over huge state spaces.

Exclamation-circle But some domains are inherently hard, and for them, general, domain-independent
planners unlikely to approach specialized methods.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 135/238

Planning as Heuristic Search

• STRIPS P = 〈F,O, I,G〉 encodes model S(P) = 〈S, s0, SG, Act, A, f, c〉

• Finding a plan in S(P) reduces to finding a path/reachability in a graph where:
I Nodes represent the states s in the model
I Edges (s, s′) capture corresponding transitions s′ = f(a, s), a ∈ A(s)

• State models and graphs given implicitly by P .

• Their sizes are exponential in number of atoms in F .

It’s critical to use heuristic functions to guide the search.

If the user had to supply the heuristic function by hand, then we would lose some of the
selling points: generality + autonomy + flexibility + rapid prototyping.

Question-Circle Question
How to get heuristic functions automatically from P itself?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 136/238

Planning as Heuristic Search

• STRIPS P = 〈F,O, I,G〉 encodes model S(P) = 〈S, s0, SG, Act, A, f, c〉

• Finding a plan in S(P) reduces to finding a path/reachability in a graph where:
I Nodes represent the states s in the model
I Edges (s, s′) capture corresponding transitions s′ = f(a, s), a ∈ A(s)

• State models and graphs given implicitly by P .

• Their sizes are exponential in number of atoms in F .

It’s critical to use heuristic functions to guide the search.

If the user had to supply the heuristic function by hand, then we would lose some of the
selling points: generality + autonomy + flexibility + rapid prototyping.

Question-Circle Question
How to get heuristic functions automatically from P itself?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 136/238

Planning as Heuristic Search

• STRIPS P = 〈F,O, I,G〉 encodes model S(P) = 〈S, s0, SG, Act, A, f, c〉

• Finding a plan in S(P) reduces to finding a path/reachability in a graph where:
I Nodes represent the states s in the model
I Edges (s, s′) capture corresponding transitions s′ = f(a, s), a ∈ A(s)

• State models and graphs given implicitly by P .

• Their sizes are exponential in number of atoms in F .

It’s critical to use heuristic functions to guide the search.

If the user had to supply the heuristic function by hand, then we would lose some of the
selling points: generality + autonomy + flexibility + rapid prototyping.

Question-Circle Question
How to get heuristic functions automatically from P itself?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 136/238

Heuristics: where they come from?

General idea for obtaining heuristics
Heuristic functions obtained as optimal cost functions of relaxed problems.
• Routing Finding: Manhattan distance or straight line.
• N-puzzle: # misplaced tiles or sum of Manhattan distances.
• Travelling Salesman Problem: Spanning Tree.

Why is navigation hard?

Because of obstacles!

So, suppose you can flight or
walk through walls!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 137/238

Heuristics: where they come from?

General idea for obtaining heuristics
Heuristic functions obtained as optimal cost functions of relaxed problems.
• Routing Finding: Manhattan distance or straight line.
• N-puzzle: # misplaced tiles or sum of Manhattan distances.
• Travelling Salesman Problem: Spanning Tree.

Why is navigation hard?
Because of obstacles!

So, suppose you can flight or
walk through walls!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 137/238

Heuristics: where they come from?

General idea for obtaining heuristics
Heuristic functions obtained as optimal cost functions of relaxed problems.
• Routing Finding: Manhattan distance or straight line.
• N-puzzle: # misplaced tiles or sum of Manhattan distances.
• Travelling Salesman Problem: Spanning Tree.

Why is navigation hard?
Because of obstacles!

So, suppose you can flight or
walk through walls!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 137/238

How to Relax Informally

Relaxation means to simplify the problem, and take the solution to the simpler
problem as the heuristic estimate for the solution to the actual problem.

• You have a problem, P ∈ P, whose perfect heuristic h∗ you wish to estimate.

• You define a simpler problem, P ′ ∈ P ′, whose perfect heuristic h′∗ can be used to
estimate h∗.

• You define a transformation, r, that simplifies instances from P into instances P ′.

• Given problem instance P ∈ P, you estimate h∗(P) by h′∗(r(P)).

P
h∗

R+
0 ∪ {∞}

P ′
h′∗

r

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 138/238

How to Relax Informally

Relaxation means to simplify the problem, and take the solution to the simpler
problem as the heuristic estimate for the solution to the actual problem.

• You have a problem, P ∈ P, whose perfect heuristic h∗ you wish to estimate.

• You define a simpler problem, P ′ ∈ P ′, whose perfect heuristic h′∗ can be used to
estimate h∗.

• You define a transformation, r, that simplifies instances from P into instances P ′.

• Given problem instance P ∈ P, you estimate h∗(P) by h′∗(r(P)).

P
h∗

R+
0 ∪ {∞}

P ′
h′∗

r

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 138/238

How to Relax During Search: Diagram

Using a relaxation R = (P ′, r, h′∗) during search:

Heuristic Search Solution to P

r(Ps)
r h′∗

Problem P

h(s) = h′∗(r(Ps))state s

• Πs: Π with initial state replaced by s, i.e., Π = (F,A, c, I,G) changed to (F,A, c, s,G).
à That is, the task of finding a plan for state s.

So, during search, the relaxation is used only inside the computation of the heuristic
function on each state; the relaxation does not affect anything else.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 139/238

Relaxations: Navigation

Navigation in 4-connected grid with
obstacles:

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
(not (obstacle ?nextpos)))

:effect (and (at ?nextpos)
(not (at ?curpos))))

P ′: can go through walls, drop obstacle preconditions:

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
;; drop obstacle precondition
)

:effect (and (at ?nextpos)
(not (at-robot ?curpos))))

What is h′∗ for the relaxed problem?
Manhattan Distance! (|x− goal.x|+ |y − goal.y|)

But, how do we know which predicate to drop?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 140/238

Relaxations: Navigation

Navigation in 4-connected grid with
obstacles:

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
(not (obstacle ?nextpos)))

:effect (and (at ?nextpos)
(not (at ?curpos))))

P ′: can go through walls, drop obstacle preconditions:
(:action move

:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
;; drop obstacle precondition
)

:effect (and (at ?nextpos)
(not (at-robot ?curpos))))

What is h′∗ for the relaxed problem?

Manhattan Distance! (|x− goal.x|+ |y − goal.y|)

But, how do we know which predicate to drop?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 140/238

Relaxations: Navigation

Navigation in 4-connected grid with
obstacles:

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
(not (obstacle ?nextpos)))

:effect (and (at ?nextpos)
(not (at ?curpos))))

P ′: can go through walls, drop obstacle preconditions:
(:action move

:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
;; drop obstacle precondition
)

:effect (and (at ?nextpos)
(not (at-robot ?curpos))))

What is h′∗ for the relaxed problem?
Manhattan Distance! (|x− goal.x|+ |y − goal.y|)

But, how do we know which predicate to drop?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 140/238

Relaxations: Navigation

Navigation in 4-connected grid with
obstacles:

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
(not (obstacle ?nextpos)))

:effect (and (at ?nextpos)
(not (at ?curpos))))

P ′: can go through walls, drop obstacle preconditions:
(:action move

:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
;; drop obstacle precondition
)

:effect (and (at ?nextpos)
(not (at-robot ?curpos))))

What is h′∗ for the relaxed problem?
Manhattan Distance! (|x− goal.x|+ |y − goal.y|)

But, how do we know which predicate to drop?
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 140/238

Relaxations: N-Puzzle

(:action slide
:parameters (?t ?s1 ?s2)
:precondition (and (at ?t ?s1) (blank ?s2)

(connected ?s1 ?s2))
:effect (and (at ?t ?s2) (blank ?s1)

(not (at ?t ?s1)) (not (blank ?s2))))

Proposal 1: P ′: ignore blanks; can overlap tiles

(:action slide
:parameters (?t ?s1 ?s2)
:precondition (and (at ?t ?s1) ;; drop blank

(connected ?s1 ?s2))
:effect (and (at ?t ?s2)

(not (at ?t ?s1))))

h′∗: Manhattan Distance!

In the example: h′∗ = 2 + 0 + 5 + · · ·+ 2 + 0 + 5

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 141/238

Relaxations: N-Puzzle

(:action slide
:parameters (?t ?s1 ?s2)
:precondition (and (at ?t ?s1) (blank ?s2)

(connected ?s1 ?s2))
:effect (and (at ?t ?s2) (blank ?s1)

(not (at ?t ?s1)) (not (blank ?s2))))

Proposal 1: P ′: ignore blanks; can overlap tiles
(:action slide

:parameters (?t ?s1 ?s2)
:precondition (and (at ?t ?s1) ;; drop blank

(connected ?s1 ?s2))
:effect (and (at ?t ?s2)

(not (at ?t ?s1))))

h′∗: Manhattan Distance!

In the example: h′∗ = 2 + 0 + 5 + · · ·+ 2 + 0 + 5

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 141/238

Relaxations: N-Puzzle

(:action slide
:parameters (?t ?s1 ?s2)
:precondition (and (at ?t ?s1) (blank ?s2)

(connected ?s1 ?s2))
:effect (and (at ?t ?s2) (blank ?s1)

(not (at ?t ?s1)) (not (blank ?s2))))

Proposal 2: P ′: can lift and move tiles together

(:action slide
:parameters (?t ?s1 ?s2)
:precondition (and (at ?t ?s1)) ;; drop blank
:effect (and (at ?t ?s2) ;; and connected

(not (at ?t ?s1))))

h′∗: Misplaced tiles

In the example: h′∗ = 15

Again, how do we know which predicate to drop?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 142/238

Relaxations: N-Puzzle

(:action slide
:parameters (?t ?s1 ?s2)
:precondition (and (at ?t ?s1) (blank ?s2)

(connected ?s1 ?s2))
:effect (and (at ?t ?s2) (blank ?s1)

(not (at ?t ?s1)) (not (blank ?s2))))

Proposal 2: P ′: can lift and move tiles together
(:action slide

:parameters (?t ?s1 ?s2)
:precondition (and (at ?t ?s1)) ;; drop blank
:effect (and (at ?t ?s2) ;; and connected

(not (at ?t ?s1))))

h′∗: Misplaced tiles

In the example: h′∗ = 15

Again, how do we know which predicate to drop?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 142/238

Relaxations: N-Puzzle

(:action slide
:parameters (?t ?s1 ?s2)
:precondition (and (at ?t ?s1) (blank ?s2)

(connected ?s1 ?s2))
:effect (and (at ?t ?s2) (blank ?s1)

(not (at ?t ?s1)) (not (blank ?s2))))

Proposal 2: P ′: can lift and move tiles together
(:action slide

:parameters (?t ?s1 ?s2)
:precondition (and (at ?t ?s1)) ;; drop blank
:effect (and (at ?t ?s2) ;; and connected

(not (at ?t ?s1))))

h′∗: Misplaced tiles

In the example: h′∗ = 15

Again, how do we know which predicate to drop?
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 142/238

Goal Counting Relaxation
Let’s act as if every action is possible and no ’undos’:

1 Drop all preconditions — all is executable.
2 Drop all negative effects — no undos.

• Problem P : All STRIPS planning tasks.
• Simpler problem P ′: All STRIPS planning tasks with empty preconditions and deletes.
• Perfect heuristic h′∗ for P ′: Optimal plan cost wrt P ′.
• Transformation r: Drop the preconditions and deletes.

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
(not (obstacle ?nextpos)))

:effect (and (at ?nextpos) (not (at ?curpos))
(visited ?nextpos)))

(:goal (and (visited loc-x0-y0)
(visited loc-x0-y1)
(visited loc-x0-y3)))

Relaxation P ′:
(:action move

:parameters (?curpos ?nextpos)
:precondition ()
:effect (and (at-robot ?nextpos)

(visited ?nextpos)))

What is h′∗ for P ′?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 143/238

Goal Counting Relaxation
Let’s act as if every action is possible and no ’undos’:

1 Drop all preconditions — all is executable.
2 Drop all negative effects — no undos.

• Problem P : All STRIPS planning tasks.
• Simpler problem P ′: All STRIPS planning tasks with empty preconditions and deletes.
• Perfect heuristic h′∗ for P ′: Optimal plan cost wrt P ′.
• Transformation r: Drop the preconditions and deletes.

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
(not (obstacle ?nextpos)))

:effect (and (at ?nextpos) (not (at ?curpos))
(visited ?nextpos)))

(:goal (and (visited loc-x0-y0)
(visited loc-x0-y1)
(visited loc-x0-y3)))

Relaxation P ′:
(:action move

:parameters (?curpos ?nextpos)
:precondition ()
:effect (and (at-robot ?nextpos)

(visited ?nextpos)))

What is h′∗ for P ′?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 143/238

Goal Counting Relaxation
Let’s act as if every action is possible and no ’undos’:

1 Drop all preconditions — all is executable.
2 Drop all negative effects — no undos.

• Problem P : All STRIPS planning tasks.
• Simpler problem P ′: All STRIPS planning tasks with empty preconditions and deletes.
• Perfect heuristic h′∗ for P ′: Optimal plan cost wrt P ′.
• Transformation r: Drop the preconditions and deletes.

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
(not (obstacle ?nextpos)))

:effect (and (at ?nextpos) (not (at ?curpos))
(visited ?nextpos)))

(:goal (and (visited loc-x0-y0)
(visited loc-x0-y1)
(visited loc-x0-y3)))

Relaxation P ′:
(:action move

:parameters (?curpos ?nextpos)
:precondition ()
:effect (and (at-robot ?nextpos)

(visited ?nextpos)))

What is h′∗ for P ′?
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 143/238

Precondition + Delete Relaxation in Blocksworld

E A

B

C

D

(:action put_down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (clear ?y) (holding ?x) (not (on ?x ?y))

(not (clear ?x)) (not (handempty))))

(:goal (and (holding d) (clear b)))

Relaxation P ′:
(:action put_down

:parameters (?x)
:precondition ()
:effect (and (clear ?x) (handempty) (ontable ?x)))

(:action unstack
:parameters (?x ?y)
:precondition ()
:effect (and (clear ?y) (holding ?x)))

Plan pickup(d), putdown(b) works for P ′.
Question-Circle Is then h′∗ = 2? No! h′∗ = 1! Optimal plan is unstack(d, b)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 144/238

Precondition + Delete Relaxation in Blocksworld

E A

B

C

D

(:action put_down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (clear ?y) (holding ?x) (not (on ?x ?y))

(not (clear ?x)) (not (handempty))))

(:goal (and (holding d) (clear b)))

Relaxation P ′:
(:action put_down

:parameters (?x)
:precondition ()
:effect (and (clear ?x) (handempty) (ontable ?x)))

(:action unstack
:parameters (?x ?y)
:precondition ()
:effect (and (clear ?y) (holding ?x)))

Plan pickup(d), putdown(b) works for P ′.
Question-Circle Is then h′∗ = 2?

No! h′∗ = 1! Optimal plan is unstack(d, b)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 144/238

Precondition + Delete Relaxation in Blocksworld

E A

B

C

D

(:action put_down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (clear ?y) (holding ?x) (not (on ?x ?y))

(not (clear ?x)) (not (handempty))))

(:goal (and (holding d) (clear b)))

Relaxation P ′:
(:action put_down

:parameters (?x)
:precondition ()
:effect (and (clear ?x) (handempty) (ontable ?x)))

(:action unstack
:parameters (?x ?y)
:precondition ()
:effect (and (clear ?y) (holding ?x)))

Plan pickup(d), putdown(b) works for P ′.
Question-Circle Is then h′∗ = 2? No! h′∗ = 1! Optimal plan is unstack(d, b)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 144/238

Precondition + Delete Relaxation vs. Goal Counting

Let’s act “as if every action is possible and no ’undos”’:

1 Drop all preconditions — all is executable.
2 Drop all negative effects — no undos.

Yet:

Optimal STRIPS planning with empty preconditions and deletes is still NP-hard!
Hand-Point-Right (Reduction from MINIMUM COVER, of goal set by add lists.)

Need to approximate the perfect heuristic h′∗ for P ′.

Hence goal counting: just approximate h′∗ by h] = number-of-false-goals.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 145/238

Precondition + Delete Relaxation vs. Goal Counting

Let’s act “as if every action is possible and no ’undos”’:

1 Drop all preconditions — all is executable.
2 Drop all negative effects — no undos.

Yet:
Optimal STRIPS planning with empty preconditions and deletes is still NP-hard!

Hand-Point-Right (Reduction from MINIMUM COVER, of goal set by add lists.)

Need to approximate the perfect heuristic h′∗ for P ′.

Hence goal counting: just approximate h′∗ by h] = number-of-false-goals.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 145/238

Precondition + Delete Relaxation vs. Goal Counting

Let’s act “as if every action is possible and no ’undos”’:

1 Drop all preconditions — all is executable.
2 Drop all negative effects — no undos.

Yet:
Optimal STRIPS planning with empty preconditions and deletes is still NP-hard!

Hand-Point-Right (Reduction from MINIMUM COVER, of goal set by add lists.)

Need to approximate the perfect heuristic h′∗ for P ′.

Hence goal counting: just approximate h′∗ by h] = number-of-false-goals.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 145/238

Challenge!

Question-Circle Question
We have a robot with one gripper, two rooms A and B, and n balls to be transported from A
to B. The actions available are move, pickBall and dropBall; say
h = “number of balls not yet in room B”. Can h be derived as hR for a relaxation R?

1 No.
2 Yes, just drop the deletes.
3 Sure, every admissible h can be derived via a relaxation.
4 I’d rather relax at the beach.

1 Incorrect. We can define P ′ as the problem of computing the cardinality of a finite set,
and define r as the function that maps a state to the set of balls not yet in room B.

2 Incorrect, should drop preconditions (and deletes).
3 Yes. Given admissible h : P 7→ R+

0 ∪{∞}, we can simply define P ′ := P and take r to be
the identity function idP . In other words, R := (P, idP , h) is a relaxation with hR = h.

4 Me, too!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 146/238

Challenge!

Question-Circle Question
We have a robot with one gripper, two rooms A and B, and n balls to be transported from A
to B. The actions available are move, pickBall and dropBall; say
h = “number of balls not yet in room B”. Can h be derived as hR for a relaxation R?

1 No.
2 Yes, just drop the deletes.
3 Sure, every admissible h can be derived via a relaxation.
4 I’d rather relax at the beach.

1 Incorrect. We can define P ′ as the problem of computing the cardinality of a finite set,
and define r as the function that maps a state to the set of balls not yet in room B.

2 Incorrect, should drop preconditions (and deletes).
3 Yes. Given admissible h : P 7→ R+

0 ∪{∞}, we can simply define P ′ := P and take r to be
the identity function idP . In other words, R := (P, idP , h) is a relaxation with hR = h.

4 Me, too!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 146/238

Challenge!

Question-Circle Question
We have a robot with one gripper, two rooms A and B, and n balls to be transported from A
to B. The actions available are move, pickBall and dropBall; say
h = “number of balls not yet in room B”. Can h be derived as hR for a relaxation R?

1 No.
2 Yes, just drop the deletes.
3 Sure, every admissible h can be derived via a relaxation.
4 I’d rather relax at the beach.

1 Incorrect. We can define P ′ as the problem of computing the cardinality of a finite set,
and define r as the function that maps a state to the set of balls not yet in room B.

2 Incorrect, should drop preconditions (and deletes).

3 Yes. Given admissible h : P 7→ R+
0 ∪{∞}, we can simply define P ′ := P and take r to be

the identity function idP . In other words, R := (P, idP , h) is a relaxation with hR = h.
4 Me, too!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 146/238

Challenge!

Question-Circle Question
We have a robot with one gripper, two rooms A and B, and n balls to be transported from A
to B. The actions available are move, pickBall and dropBall; say
h = “number of balls not yet in room B”. Can h be derived as hR for a relaxation R?

1 No.
2 Yes, just drop the deletes.
3 Sure, every admissible h can be derived via a relaxation.
4 I’d rather relax at the beach.

1 Incorrect. We can define P ′ as the problem of computing the cardinality of a finite set,
and define r as the function that maps a state to the set of balls not yet in room B.

2 Incorrect, should drop preconditions (and deletes).
3 Yes. Given admissible h : P 7→ R+

0 ∪{∞}, we can simply define P ′ := P and take r to be
the identity function idP . In other words, R := (P, idP , h) is a relaxation with hR = h.

4 Me, too!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 146/238

Challenge!

Question-Circle Question
We have a robot with one gripper, two rooms A and B, and n balls to be transported from A
to B. The actions available are move, pickBall and dropBall; say
h = “number of balls not yet in room B”. Can h be derived as hR for a relaxation R?

1 No.
2 Yes, just drop the deletes.
3 Sure, every admissible h can be derived via a relaxation.
4 I’d rather relax at the beach.

1 Incorrect. We can define P ′ as the problem of computing the cardinality of a finite set,
and define r as the function that maps a state to the set of balls not yet in room B.

2 Incorrect, should drop preconditions (and deletes).
3 Yes. Given admissible h : P 7→ R+

0 ∪{∞}, we can simply define P ′ := P and take r to be
the identity function idP . In other words, R := (P, idP , h) is a relaxation with hR = h.

4 Me, too!
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 146/238

Remarks

Is Goal Counting any good?
The goal-counting approximation h] = “count the number of goals currently not true” is a
very uninformative heuristic function:

1 Range of heuristic values is small (0 . . . |G|).
2 We can transform any planning task into an equivalent one where h(s) = 1 for all

non-goal states s. How?

I Replace goal by new fact g and add a new action achieving g with precondition G.

3 Ignores almost all structure: Heuristic value does not depend on the actions at all!

I Dropping preconditions is “too much”.

Let’s next see how to compute much better (more informed) heuristic functions (still
automatically from the PDDL description!).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 147/238

Remarks

Is Goal Counting any good?
The goal-counting approximation h] = “count the number of goals currently not true” is a
very uninformative heuristic function:

1 Range of heuristic values is small (0 . . . |G|).

2 We can transform any planning task into an equivalent one where h(s) = 1 for all
non-goal states s. How?

I Replace goal by new fact g and add a new action achieving g with precondition G.

3 Ignores almost all structure: Heuristic value does not depend on the actions at all!

I Dropping preconditions is “too much”.

Let’s next see how to compute much better (more informed) heuristic functions (still
automatically from the PDDL description!).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 147/238

Remarks

Is Goal Counting any good?
The goal-counting approximation h] = “count the number of goals currently not true” is a
very uninformative heuristic function:

1 Range of heuristic values is small (0 . . . |G|).
2 We can transform any planning task into an equivalent one where h(s) = 1 for all

non-goal states s. How?

I Replace goal by new fact g and add a new action achieving g with precondition G.
3 Ignores almost all structure: Heuristic value does not depend on the actions at all!

I Dropping preconditions is “too much”.

Let’s next see how to compute much better (more informed) heuristic functions (still
automatically from the PDDL description!).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 147/238

Remarks

Is Goal Counting any good?
The goal-counting approximation h] = “count the number of goals currently not true” is a
very uninformative heuristic function:

1 Range of heuristic values is small (0 . . . |G|).
2 We can transform any planning task into an equivalent one where h(s) = 1 for all

non-goal states s. How?
I Replace goal by new fact g and add a new action achieving g with precondition G.

3 Ignores almost all structure: Heuristic value does not depend on the actions at all!

I Dropping preconditions is “too much”.

Let’s next see how to compute much better (more informed) heuristic functions (still
automatically from the PDDL description!).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 147/238

Remarks

Is Goal Counting any good?
The goal-counting approximation h] = “count the number of goals currently not true” is a
very uninformative heuristic function:

1 Range of heuristic values is small (0 . . . |G|).
2 We can transform any planning task into an equivalent one where h(s) = 1 for all

non-goal states s. How?
I Replace goal by new fact g and add a new action achieving g with precondition G.

3 Ignores almost all structure: Heuristic value does not depend on the actions at all!

I Dropping preconditions is “too much”.

Let’s next see how to compute much better (more informed) heuristic functions (still
automatically from the PDDL description!).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 147/238

Remarks

Is Goal Counting any good?
The goal-counting approximation h] = “count the number of goals currently not true” is a
very uninformative heuristic function:

1 Range of heuristic values is small (0 . . . |G|).
2 We can transform any planning task into an equivalent one where h(s) = 1 for all

non-goal states s. How?
I Replace goal by new fact g and add a new action achieving g with precondition G.

3 Ignores almost all structure: Heuristic value does not depend on the actions at all!
I Dropping preconditions is “too much”.

Let’s next see how to compute much better (more informed) heuristic functions (still
automatically from the PDDL description!).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 147/238

Remarks

Is Goal Counting any good?
The goal-counting approximation h] = “count the number of goals currently not true” is a
very uninformative heuristic function:

1 Range of heuristic values is small (0 . . . |G|).
2 We can transform any planning task into an equivalent one where h(s) = 1 for all

non-goal states s. How?
I Replace goal by new fact g and add a new action achieving g with precondition G.

3 Ignores almost all structure: Heuristic value does not depend on the actions at all!
I Dropping preconditions is “too much”.

Let’s next see how to compute much better (more informed) heuristic functions (still
automatically from the PDDL description!).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 147/238

Remarks

Is Goal Counting any good?
The goal-counting approximation h] = “count the number of goals currently not true” is a
very uninformative heuristic function:

1 Range of heuristic values is small (0 . . . |G|).
2 We can transform any planning task into an equivalent one where h(s) = 1 for all

non-goal states s. How?
I Replace goal by new fact g and add a new action achieving g with precondition G.

3 Ignores almost all structure: Heuristic value does not depend on the actions at all!
I Dropping preconditions is “too much”.

Let’s next see how to compute much better (more informed) heuristic functions (still
automatically from the PDDL description!).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 147/238

Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Real world: (before)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 148/238

Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Real world: (after)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 148/238

Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Relaxed world: (before)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 148/238

Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Relaxed world: (after)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 148/238

Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Real world: (before)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 149/238

Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Real world: (after)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 149/238

Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Relaxed world: (before)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 149/238

Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Relaxed world: (after)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 149/238

Heuristics for Classical Planning

• Heuristics derived from relaxation where delete-lists of actions are dropped.
I That is, delete all (not ...) clauses in the each action’s :effect in the PDDL

• This simplification is called the delete-relaxation.

• Define delete-relaxation heuristic h+(s) as:

h+(s)
def
= h∗P ′(s)

where P ′ is delete-relaxation of P , P (s) is P but with s as initial state, and h∗P (s) is
optimal cost of P (s).

D Delete relaxation is admissible (i.e., optimistic):
I Applying a relaxed action can only ever make more facts true.
I That can only be good, i.e., cannot render the task unsolvable

D Keeps actions’ preconditions, and thus the causal “structure”
Question-Circle ... but what does it “mean”?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 150/238

Heuristics for Classical Planning

• Heuristics derived from relaxation where delete-lists of actions are dropped.
I That is, delete all (not ...) clauses in the each action’s :effect in the PDDL

• This simplification is called the delete-relaxation.

• Define delete-relaxation heuristic h+(s) as:

h+(s)
def
= h∗P ′(s)

where P ′ is delete-relaxation of P , P (s) is P but with s as initial state, and h∗P (s) is
optimal cost of P (s).

D Delete relaxation is admissible (i.e., optimistic):
I Applying a relaxed action can only ever make more facts true.
I That can only be good, i.e., cannot render the task unsolvable

D Keeps actions’ preconditions, and thus the causal “structure”
Question-Circle ... but what does it “mean”?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 150/238

Visiting Australia Cities with h+

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C = {Syd,Ade,Bri,Per ,Ade,Dar}.

• P : at(x) and visited(x), for x ∈ C.
• A: drive(x, y) where x 6= y have a high-way.

c(drive(x, y)) =


1 x, y ∈ {Syd,Bri}
1.5 x, y ∈ {Syd,Ade}
3.5 x, y ∈ {Ade,Per}
4 x, y ∈ {Ade,Dar}

• I = {at(Syd), visited(Syd)};
• G = {at(Syd)} ∪ {visited(x) | x ∈ C}.

Planning vs. Relaxed Planning:
• Optimal plan: drive(Syd,Bri), drive(Bri,Syd), drive(Syd,Ade), drive(Ade,Per),

drive(Per ,Ade), drive(Ade,Dar), drive(Dar ,Ade), drive(Ade,Syd).
• Optimal relaxed: drive(Syd,Bri), drive(Syd,Ade), drive(Ade,Per), drive(Ade,Dar)
• So, h∗(I) = 20 and h+(I) = 10.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 151/238

Visiting Australia Cities with h+

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C = {Syd,Ade,Bri,Per ,Ade,Dar}.

• P : at(x) and visited(x), for x ∈ C.
• A: drive(x, y) where x 6= y have a high-way.

c(drive(x, y)) =


1 x, y ∈ {Syd,Bri}
1.5 x, y ∈ {Syd,Ade}
3.5 x, y ∈ {Ade,Per}
4 x, y ∈ {Ade,Dar}

• I = {at(Syd), visited(Syd)};
• G = {at(Syd)} ∪ {visited(x) | x ∈ C}.

Planning vs. Relaxed Planning:
• Optimal plan: drive(Syd,Bri), drive(Bri,Syd), drive(Syd,Ade), drive(Ade,Per),

drive(Per ,Ade), drive(Ade,Dar), drive(Dar ,Ade), drive(Ade,Syd).
• Optimal relaxed: drive(Syd,Bri), drive(Syd,Ade), drive(Ade,Per), drive(Ade,Dar)
• So, h∗(I) = 20 and h+(I) = 10.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 151/238

Visiting Australia Cities with h+

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C = {Syd,Ade,Bri,Per ,Ade,Dar}.

• P : at(x) and visited(x), for x ∈ C.
• A: drive(x, y) where x 6= y have a high-way.

c(drive(x, y)) =


1 x, y ∈ {Syd,Bri}
1.5 x, y ∈ {Syd,Ade}
3.5 x, y ∈ {Ade,Per}
4 x, y ∈ {Ade,Dar}

• I = {at(Syd), visited(Syd)};
• G = {at(Syd)} ∪ {visited(x) | x ∈ C}.

Planning vs. Relaxed Planning:
• Optimal plan:

drive(Syd,Bri), drive(Bri,Syd), drive(Syd,Ade), drive(Ade,Per),
drive(Per ,Ade), drive(Ade,Dar), drive(Dar ,Ade), drive(Ade,Syd).

• Optimal relaxed: drive(Syd,Bri), drive(Syd,Ade), drive(Ade,Per), drive(Ade,Dar)
• So, h∗(I) = 20 and h+(I) = 10.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 151/238

Visiting Australia Cities with h+

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C = {Syd,Ade,Bri,Per ,Ade,Dar}.

• P : at(x) and visited(x), for x ∈ C.
• A: drive(x, y) where x 6= y have a high-way.

c(drive(x, y)) =


1 x, y ∈ {Syd,Bri}
1.5 x, y ∈ {Syd,Ade}
3.5 x, y ∈ {Ade,Per}
4 x, y ∈ {Ade,Dar}

• I = {at(Syd), visited(Syd)};
• G = {at(Syd)} ∪ {visited(x) | x ∈ C}.

Planning vs. Relaxed Planning:
• Optimal plan: drive(Syd,Bri), drive(Bri,Syd), drive(Syd,Ade), drive(Ade,Per),

drive(Per ,Ade), drive(Ade,Dar), drive(Dar ,Ade), drive(Ade,Syd).
• Optimal relaxed:

drive(Syd,Bri), drive(Syd,Ade), drive(Ade,Per), drive(Ade,Dar)
• So, h∗(I) = 20 and h+(I) = 10.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 151/238

Visiting Australia Cities with h+

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C = {Syd,Ade,Bri,Per ,Ade,Dar}.

• P : at(x) and visited(x), for x ∈ C.
• A: drive(x, y) where x 6= y have a high-way.

c(drive(x, y)) =


1 x, y ∈ {Syd,Bri}
1.5 x, y ∈ {Syd,Ade}
3.5 x, y ∈ {Ade,Per}
4 x, y ∈ {Ade,Dar}

• I = {at(Syd), visited(Syd)};
• G = {at(Syd)} ∪ {visited(x) | x ∈ C}.

Planning vs. Relaxed Planning:
• Optimal plan: drive(Syd,Bri), drive(Bri,Syd), drive(Syd,Ade), drive(Ade,Per),

drive(Per ,Ade), drive(Ade,Dar), drive(Dar ,Ade), drive(Ade,Syd).
• Optimal relaxed: drive(Syd,Bri), drive(Syd,Ade), drive(Ade,Per), drive(Ade,Dar)
• So, h∗(I) =

20 and h+(I) = 10.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 151/238

Visiting Australia Cities with h+

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C = {Syd,Ade,Bri,Per ,Ade,Dar}.

• P : at(x) and visited(x), for x ∈ C.
• A: drive(x, y) where x 6= y have a high-way.

c(drive(x, y)) =


1 x, y ∈ {Syd,Bri}
1.5 x, y ∈ {Syd,Ade}
3.5 x, y ∈ {Ade,Per}
4 x, y ∈ {Ade,Dar}

• I = {at(Syd), visited(Syd)};
• G = {at(Syd)} ∪ {visited(x) | x ∈ C}.

Planning vs. Relaxed Planning:
• Optimal plan: drive(Syd,Bri), drive(Bri,Syd), drive(Syd,Ade), drive(Ade,Per),

drive(Per ,Ade), drive(Ade,Dar), drive(Dar ,Ade), drive(Ade,Syd).
• Optimal relaxed: drive(Syd,Bri), drive(Syd,Ade), drive(Ade,Per), drive(Ade,Dar)
• So, h∗(I) = 20

and h+(I) = 10.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 151/238

Visiting Australia Cities with h+

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C = {Syd,Ade,Bri,Per ,Ade,Dar}.

• P : at(x) and visited(x), for x ∈ C.
• A: drive(x, y) where x 6= y have a high-way.

c(drive(x, y)) =


1 x, y ∈ {Syd,Bri}
1.5 x, y ∈ {Syd,Ade}
3.5 x, y ∈ {Ade,Per}
4 x, y ∈ {Ade,Dar}

• I = {at(Syd), visited(Syd)};
• G = {at(Syd)} ∪ {visited(x) | x ∈ C}.

Planning vs. Relaxed Planning:
• Optimal plan: drive(Syd,Bri), drive(Bri,Syd), drive(Syd,Ade), drive(Ade,Per),

drive(Per ,Ade), drive(Ade,Dar), drive(Dar ,Ade), drive(Ade,Syd).
• Optimal relaxed: drive(Syd,Bri), drive(Syd,Ade), drive(Ade,Per), drive(Ade,Dar)
• So, h∗(I) = 20 and h+(I) =

10.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 151/238

Visiting Australia Cities with h+

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C = {Syd,Ade,Bri,Per ,Ade,Dar}.

• P : at(x) and visited(x), for x ∈ C.
• A: drive(x, y) where x 6= y have a high-way.

c(drive(x, y)) =


1 x, y ∈ {Syd,Bri}
1.5 x, y ∈ {Syd,Ade}
3.5 x, y ∈ {Ade,Per}
4 x, y ∈ {Ade,Dar}

• I = {at(Syd), visited(Syd)};
• G = {at(Syd)} ∪ {visited(x) | x ∈ C}.

Planning vs. Relaxed Planning:
• Optimal plan: drive(Syd,Bri), drive(Bri,Syd), drive(Syd,Ade), drive(Ade,Per),

drive(Per ,Ade), drive(Ade,Dar), drive(Dar ,Ade), drive(Ade,Syd).
• Optimal relaxed: drive(Syd,Bri), drive(Syd,Ade), drive(Ade,Per), drive(Ade,Dar)
• So, h∗(I) = 20 and h+(I) = 10.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 151/238

What does h+ give us?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 152/238

What does h+ give us?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 152/238

What does h+ give us?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 152/238

What does h+ give us?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 152/238

What does h+ give us?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 152/238

What does h+ give us?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 152/238

What does h+ give us?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 152/238

What does h+ give us?

h+(Visit Autralia) = Minimum Spanning Tree!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 152/238

Challenge!

3805 8489 @ menti.com

Question-Circle Question: What is h+ for this domain?

1 Manhattan Distance.

No, relaxed plans can’t walk through walls.

2 h∗.

Yes, optimal plan = shortest path = relaxed plan (deletes do not matter because
“shortest paths never walk back”).

3 Horizontal distance.

No, relaxed plans must move both horizontally and vertically.

4 Vertical distance.

No, relaxed plans must move both horizontally and vertically.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 153/238

https://www.menti.com/als8294chs7d
https://www.menti.com/als8294chs7d

Challenge!

3805 8489 @ menti.com

Question-Circle Question: What is h+ for this domain?

1 Manhattan Distance. No, relaxed plans can’t walk through walls.
2 h∗.

Yes, optimal plan = shortest path = relaxed plan (deletes do not matter because
“shortest paths never walk back”).

3 Horizontal distance.

No, relaxed plans must move both horizontally and vertically.

4 Vertical distance.

No, relaxed plans must move both horizontally and vertically.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 153/238

https://www.menti.com/als8294chs7d
https://www.menti.com/als8294chs7d

Challenge!

3805 8489 @ menti.com

Question-Circle Question: What is h+ for this domain?

1 Manhattan Distance. No, relaxed plans can’t walk through walls.
2 h∗. Yes, optimal plan = shortest path = relaxed plan (deletes do not matter because

“shortest paths never walk back”).
3 Horizontal distance.

No, relaxed plans must move both horizontally and vertically.

4 Vertical distance.

No, relaxed plans must move both horizontally and vertically.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 153/238

https://www.menti.com/als8294chs7d
https://www.menti.com/als8294chs7d

Challenge!

3805 8489 @ menti.com

Question-Circle Question: What is h+ for this domain?

1 Manhattan Distance. No, relaxed plans can’t walk through walls.
2 h∗. Yes, optimal plan = shortest path = relaxed plan (deletes do not matter because

“shortest paths never walk back”).
3 Horizontal distance. No, relaxed plans must move both horizontally and vertically.
4 Vertical distance. No, relaxed plans must move both horizontally and vertically.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 153/238

https://www.menti.com/als8294chs7d
https://www.menti.com/als8294chs7d

h+ as a Relaxation Heuristic

P

P ′ ⊆ Pr

h∗
R+

0 ∪ {∞}

h′∗

where, for all P ∈ P:
h′∗(r(P)) ≤ h∗(P).

For h+ = h∗ ◦ r:
• Problem P ∈ P: All STRIPS planning tasks.
• Simpler problem P ∈ P ′: All STRIPS planning tasks with empty deletes.
• Perfect heuristic h′∗ for P ′: Optimal plan cost on P ′.
• Transformation r: Drop the deletes; drop all (not ...) terms in :effects

Question-Circle Questions

1 Is this a native relaxation?

Yes!

2 Is this relaxation efficiently constructible?

Yes!

3 Is this relaxation efficiently computable?

No!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 154/238

h+ as a Relaxation Heuristic

P

P ′ ⊆ Pr

h∗
R+

0 ∪ {∞}

h′∗

where, for all P ∈ P:
h′∗(r(P)) ≤ h∗(P).

For h+ = h∗ ◦ r:
• Problem P ∈ P: All STRIPS planning tasks.
• Simpler problem P ∈ P ′: All STRIPS planning tasks with empty deletes.
• Perfect heuristic h′∗ for P ′: Optimal plan cost on P ′.
• Transformation r: Drop the deletes; drop all (not ...) terms in :effects

Question-Circle Questions

1 Is this a native relaxation?

Yes!

2 Is this relaxation efficiently constructible?

Yes!

3 Is this relaxation efficiently computable?

No!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 154/238

h+ as a Relaxation Heuristic

P

P ′ ⊆ Pr

h∗
R+

0 ∪ {∞}

h′∗

where, for all P ∈ P:
h′∗(r(P)) ≤ h∗(P).

For h+ = h∗ ◦ r:
• Problem P ∈ P: All STRIPS planning tasks.
• Simpler problem P ∈ P ′: All STRIPS planning tasks with empty deletes.
• Perfect heuristic h′∗ for P ′: Optimal plan cost on P ′.
• Transformation r: Drop the deletes; drop all (not ...) terms in :effects

Question-Circle Questions

1 Is this a native relaxation?

Yes!

2 Is this relaxation efficiently constructible?

Yes!

3 Is this relaxation efficiently computable?

No!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 154/238

h+ as a Relaxation Heuristic

P

P ′ ⊆ Pr

h∗
R+

0 ∪ {∞}

h′∗

where, for all P ∈ P:
h′∗(r(P)) ≤ h∗(P).

For h+ = h∗ ◦ r:
• Problem P ∈ P: All STRIPS planning tasks.
• Simpler problem P ∈ P ′: All STRIPS planning tasks with empty deletes.
• Perfect heuristic h′∗ for P ′: Optimal plan cost on P ′.
• Transformation r: Drop the deletes; drop all (not ...) terms in :effects

Question-Circle Questions

1 Is this a native relaxation? Yes!
2 Is this relaxation efficiently constructible?

Yes!

3 Is this relaxation efficiently computable?

No!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 154/238

h+ as a Relaxation Heuristic

P

P ′ ⊆ Pr

h∗
R+

0 ∪ {∞}

h′∗

where, for all P ∈ P:
h′∗(r(P)) ≤ h∗(P).

For h+ = h∗ ◦ r:
• Problem P ∈ P: All STRIPS planning tasks.
• Simpler problem P ∈ P ′: All STRIPS planning tasks with empty deletes.
• Perfect heuristic h′∗ for P ′: Optimal plan cost on P ′.
• Transformation r: Drop the deletes; drop all (not ...) terms in :effects

Question-Circle Questions

1 Is this a native relaxation? Yes!
2 Is this relaxation efficiently constructible? Yes!
3 Is this relaxation efficiently computable?

No!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 154/238

h+ as a Relaxation Heuristic

P

P ′ ⊆ Pr

h∗
R+

0 ∪ {∞}

h′∗

where, for all P ∈ P:
h′∗(r(P)) ≤ h∗(P).

For h+ = h∗ ◦ r:
• Problem P ∈ P: All STRIPS planning tasks.
• Simpler problem P ∈ P ′: All STRIPS planning tasks with empty deletes.
• Perfect heuristic h′∗ for P ′: Optimal plan cost on P ′.
• Transformation r: Drop the deletes; drop all (not ...) terms in :effects

Question-Circle Questions

1 Is this a native relaxation? Yes!
2 Is this relaxation efficiently constructible? Yes!
3 Is this relaxation efficiently computable? No!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 154/238

Perfect delete-relaxation h+ is hard!

Unfortunately, definition h+(s) = h∗P ′(s) not
suitable computationally:
• Solving P ′(s) optimally as difficult as
solving P (s) optimally (NP-hard).

• Hardness proved by reduction from SAT:
“When operators are restricted to one
positive precondition and one positive
postcondition, PLANMIN remains in-
tractable.” (Bylander’94)

• Remember, heuristics need to be
computed fast!

Exclamation Yet, finding one plan for P ′(s), not necessarily optimal, is easy. Why? Next slide!
• All implemented systems using the delete relaxation approximate h+ in one or the other

way. We now look at the the most wide-spread approaches to do so...
- (not , vi,)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 155/238

https://ai.dmi.unibas.ch/research/reading_group/bylander-aij1994.pdf
https://www.sciencedirect.com/science/article/pii/0004370294900817

Perfect delete-relaxation h+ is hard!

Unfortunately, definition h+(s) = h∗P ′(s) not
suitable computationally:
• Solving P ′(s) optimally as difficult as
solving P (s) optimally (NP-hard).

• Hardness proved by reduction from SAT:
“When operators are restricted to one
positive precondition and one positive
postcondition, PLANMIN remains in-
tractable.” (Bylander’94)

• Remember, heuristics need to be
computed fast!

Exclamation Yet, finding one plan for P ′(s), not necessarily optimal, is easy. Why? Next slide!

• All implemented systems using the delete relaxation approximate h+ in one or the other
way. We now look at the the most wide-spread approaches to do so...

- (not , vi,)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 155/238

https://ai.dmi.unibas.ch/research/reading_group/bylander-aij1994.pdf
https://www.sciencedirect.com/science/article/pii/0004370294900817

Perfect delete-relaxation h+ is hard!

Unfortunately, definition h+(s) = h∗P ′(s) not
suitable computationally:
• Solving P ′(s) optimally as difficult as
solving P (s) optimally (NP-hard).

• Hardness proved by reduction from SAT:
“When operators are restricted to one
positive precondition and one positive
postcondition, PLANMIN remains in-
tractable.” (Bylander’94)

• Remember, heuristics need to be
computed fast!

Exclamation Yet, finding one plan for P ′(s), not necessarily optimal, is easy. Why? Next slide!
• All implemented systems using the delete relaxation approximate h+ in one or the other

way. We now look at the the most wide-spread approaches to do so...
- (not , vi,)
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 155/238

https://ai.dmi.unibas.ch/research/reading_group/bylander-aij1994.pdf
https://www.sciencedirect.com/science/article/pii/0004370294900817

Why solving P ′(s) is “easy”?

Key Idea: Delete-free STRIPS problems like P ′(s) are fully decomposable
If plan π1 achieves G1 and plan π2 achieves G2, then plan π1 · π2 achieves G1 and G2.
à So, plans πp for each atom p yield plans for any goal G (with lots of “redundancy”).

Let’s compute how many steps are needed to reach each atom p:

Procedure: Atom p reachable in k steps with support ap from state s

1 Atom p reachable in 0 steps with no action support if p ∈ s.
2 Atom p reachable in i+ 1 steps with support ap, if not reachable in i steps or less, and
preconditions pi of ap reachable in i steps or less.

• Procedure terminates in # of steps bounded by number of atoms
I ... and if p not reachable, there is no plan for p in either P ′(s) or P (s)

• Supporters ap needed to get to goal G of P yield (relaxed) plan π′(s) for P ′(s)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 156/238

Why solving P ′(s) is “easy”?

Key Idea: Delete-free STRIPS problems like P ′(s) are fully decomposable
If plan π1 achieves G1 and plan π2 achieves G2, then plan π1 · π2 achieves G1 and G2.
à So, plans πp for each atom p yield plans for any goal G (with lots of “redundancy”).

Let’s compute how many steps are needed to reach each atom p:

Procedure: Atom p reachable in k steps with support ap from state s

1 Atom p reachable in 0 steps with no action support if p ∈ s.
2 Atom p reachable in i+ 1 steps with support ap, if not reachable in i steps or less, and
preconditions pi of ap reachable in i steps or less.

• Procedure terminates in # of steps bounded by number of atoms
I ... and if p not reachable, there is no plan for p in either P ′(s) or P (s)

• Supporters ap needed to get to goal G of P yield (relaxed) plan π′(s) for P ′(s)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 156/238

Why solving P ′(s) is “easy”?

Key Idea: Delete-free STRIPS problems like P ′(s) are fully decomposable
If plan π1 achieves G1 and plan π2 achieves G2, then plan π1 · π2 achieves G1 and G2.
à So, plans πp for each atom p yield plans for any goal G (with lots of “redundancy”).

Let’s compute how many steps are needed to reach each atom p:

Procedure: Atom p reachable in k steps with support ap from state s

1 Atom p reachable in 0 steps with no action support if p ∈ s.
2 Atom p reachable in i+ 1 steps with support ap, if not reachable in i steps or less, and
preconditions pi of ap reachable in i steps or less.

• Procedure terminates in # of steps bounded by number of atoms
I ... and if p not reachable, there is no plan for p in either P ′(s) or P (s)

• Supporters ap needed to get to goal G of P yield (relaxed) plan π′(s) for P ′(s)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 156/238

Max and Additive Heuristics
For all atoms p:

h(p; s)
def
=

{
0 if p ∈ s

mina∈Add(p)[cost(a) + h(Pre(a); s)] otherwise

Observe: h(Pre(a); s) is on set of propositions — Pre(a) may contain many atoms.

The Max Heuristic hmax

For sets of atoms C, define:

h(C; s)
def
= max

r∈C
h(r; s)

Resulting heuristic function:

hmax(s)
def
= h(G; s)

• # of steps to reach all atoms in G.
• Admissible, but often too optimistic.

The Additive Heuristic hadd

For sets of atoms C, define:

h(C; s)
def
=

∑
r∈C

h(r; s)

Resulting heuristic function:

hadd(s)
def
= h(G; s)

• sum of steps to reach each atom in G.
• Not admissible, but often informative.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 157/238

Max and Additive Heuristics
For all atoms p:

h(p; s)
def
=

{
0 if p ∈ s

mina∈Add(p)[cost(a) + h(Pre(a); s)] otherwise

Observe: h(Pre(a); s) is on set of propositions — Pre(a) may contain many atoms.
The Max Heuristic hmax

For sets of atoms C, define:

h(C; s)
def
= max

r∈C
h(r; s)

Resulting heuristic function:

hmax(s)
def
= h(G; s)

• # of steps to reach all atoms in G.
• Admissible, but often too optimistic.

The Additive Heuristic hadd

For sets of atoms C, define:

h(C; s)
def
=

∑
r∈C

h(r; s)

Resulting heuristic function:

hadd(s)
def
= h(G; s)

• sum of steps to reach each atom in G.
• Not admissible, but often informative.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 157/238

Max and Additive Heuristics
For all atoms p:

h(p; s)
def
=

{
0 if p ∈ s

mina∈Add(p)[cost(a) + h(Pre(a); s)] otherwise

Observe: h(Pre(a); s) is on set of propositions — Pre(a) may contain many atoms.
The Max Heuristic hmax

For sets of atoms C, define:

h(C; s)
def
= max

r∈C
h(r; s)

Resulting heuristic function:

hmax(s)
def
= h(G; s)

• # of steps to reach all atoms in G.
• Admissible, but often too optimistic.

The Additive Heuristic hadd

For sets of atoms C, define:

h(C; s)
def
=

∑
r∈C

h(r; s)

Resulting heuristic function:

hadd(s)
def
= h(G; s)

• sum of steps to reach each atom in G.
• Not admissible, but often informative.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 157/238

Example

Problem P = 〈F, I,O,G〉 where:
• F = {pi, qi | i ∈ {0, . . . , n}}
• I = {p0, q0}
• G = {pn, qn}
• O contains actions ai and bi, for i{0, . . . , n− 1}:

I Pre(ai) = {pi}, Add(ai) = {pi+1}, Del(ai) = {pi}
I Pre(bi) = {qi}, Add(bi) = {qi+1}, Del(bi) = {qi}

Question-Circle Questions
For the initial state I:

1 What is hmax(I)?
2 What is hadd(I)?
3 What is relaxed plan obtained from hmax?
4 What is optimal cost h∗P (I)?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 158/238

Alternative Graphic Procedure to Compute Max Heuristic
Procedure builds propositional and action layers Pi and Ai ignoring deletes from state s:

P0 = {p | p ∈ s}
Ai = {a | a ∈ O,Pre(a) ⊆ Pi}

Pi+1 = Pi ∪ {p | a ∈ Ai, p ∈ Add(a)} (ignore deletes!)

Max Heuristic hmax

The max heuristic is implicitly represented in this layered graph:

hmax(s) = smallest i such that each p ∈ G is in some layer Pk, with k ≤ i

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 159/238

Planning Graph to Compute hmax

Eggs, flour, and water are needed to bake (and eat) a cake, and to make playdo, have fun,
and be happy! Goal is to be happy and feel satisfied

P0 A0 P1 A1 P2

Have(eggs)

Have(flour)

Have(water)

bake

playdo

Have(eggs)

Have(cake)

Have(flour)

Have(playdo)

Have(water)

eat(bake)

play

Have(eggs)

Have(cake)

Have(flour)

Have(playdo)

Have(water)

Satisfied

Happy

Zhmax = max{h(Happy), h(Satisfied)} = max{2, 2} = 2 (G appears first in level 2!)

h(Happy) = 1 + h(Have(playdo)) = 1 + (1 + h(Have(water))) = 1 + (1 + 0) = 2

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 160/238

Planning Graph to Compute hmax

Eggs, flour, and water are needed to bake (and eat) a cake, and to make playdo, have fun,
and be happy! Goal is to be happy and feel satisfied

P0 A0 P1 A1 P2

Have(eggs)

Have(flour)

Have(water)

bake

playdo

Have(eggs)

Have(cake)

Have(flour)

Have(playdo)

Have(water)

eat(bake)

play

Have(eggs)

Have(cake)

Have(flour)

Have(playdo)

Have(water)

Satisfied

Happy

Zhmax = max{h(Happy), h(Satisfied)} = max{2, 2} = 2 (G appears first in level 2!)

h(Happy) = 1 + h(Have(playdo)) = 1 + (1 + h(Have(water))) = 1 + (1 + 0) = 2

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 160/238

The Additive and Max Heuristics: So What?

Summary of typical issues in practice with hadd and hmax:

1 Both hadd and hmax can be computed reasonably quickly.
2 hmax is admissible, but is typically far too optimistic.
3 hadd is not admissible, but is typically a lot more informed than hmax.
4 But hadd may overcount by ignoring positive interactions, i.e., sub-plans shared

between sub-goals.
5 Such overcounting can result in dramatic over-estimates of h∗!!

Relaxed plans (next) is a way to reduce this kind of over-counting.
• Similar to hadd, but can account for positive interactions and are much less prone to

overcounting.
• They achieve this by adding another technology layer – relaxed plan extraction – on top

of hmax or hadd.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 161/238

The Additive and Max Heuristics: So What?

Summary of typical issues in practice with hadd and hmax:

1 Both hadd and hmax can be computed reasonably quickly.
2 hmax is admissible, but is typically far too optimistic.
3 hadd is not admissible, but is typically a lot more informed than hmax.
4 But hadd may overcount by ignoring positive interactions, i.e., sub-plans shared

between sub-goals.
5 Such overcounting can result in dramatic over-estimates of h∗!!

Relaxed plans (next) is a way to reduce this kind of over-counting.
• Similar to hadd, but can account for positive interactions and are much less prone to

overcounting.
• They achieve this by adding another technology layer – relaxed plan extraction – on top

of hmax or hadd.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 161/238

Relaxed Plans and Best Supporters

Basic Idea for relaxed plans

1 First compute a best-supporter action ap for every fact p ∈ F : action that is deemed to
be the cheapest achiever of p (within the relaxation).

2 Then extract a relaxed plan from best supporters of all goal atoms.

The best-supporter can be based directly on hmax or hadd heuristics by recursively
collecting best supporters backwards from the goal, where ap is best support for p 6∈ s:

ap = argmin
a∈Add(p)

[cost(a) + h(Pre(a))]

A plan π(p; s) for p in delete-relaxation can be computed backwards as:

π(p; s)
def
=

{
0 if p ∈ s

ap ∪
⋃

q∈Pre(ap)
π(q; s) otherwise

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 162/238

Relaxed Plans and Best Supporters

Basic Idea for relaxed plans

1 First compute a best-supporter action ap for every fact p ∈ F : action that is deemed to
be the cheapest achiever of p (within the relaxation).

2 Then extract a relaxed plan from best supporters of all goal atoms.

The best-supporter can be based directly on hmax or hadd heuristics by recursively
collecting best supporters backwards from the goal, where ap is best support for p 6∈ s:

ap = argmin
a∈Add(p)

[cost(a) + h(Pre(a))]

A plan π(p; s) for p in delete-relaxation can be computed backwards as:

π(p; s)
def
=

{
0 if p ∈ s

ap ∪
⋃

q∈Pre(ap)
π(q; s) otherwise

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 162/238

Relaxed Plans and hFF

The best-supporter wrt hmax (cheapest achiever of p based on hmax):

ap = argmin
a∈Add(p)

[cost(a) + hmax(Pre(a))]

A plan π(p; s) = Ok ·Ok−1 · · ·O1 for p in delete-relaxation can be computed backwards as:

π(p; s)
def
=

{
∅ if p ∈ s

{ap} ∪
⋃

q∈Pre(ap)
π(q; s) otherwise

hFF: # of different ap-supporters needed to get to G:

hFF(s) = |
⋃
p∈G

π(p; s)|

using h = hmax for the best supporters.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 163/238

Planning Graphs for Relaxed Plans
Consider three atoms p, g1, and g2, and three actions ap, ag1 , and ag2 , that make them true,
respectively. Precondition of ap is empty, but both ag1 and = ag2 require atom p to be true.
Goal is {g1, g2} and initial state I = ∅ (nothing is true).

P0 A0 P1 A1 P2

True ap p

ag1

ag2

g1

p

g2

• h∗(I) = 3 (optimal plan is ap · ag1 · ag2).

• hmax(I) = max{h(g1; I), h(g1; I)} = 2 (goal appears at level 2 - optimistic!)

• hadd(I) = h(g1; I) + h(g1; I) = 2 + 2 = 4 (pessimistic, counts ap twice!)

• hFF(I) = |〈{ap} ∪ {ag1 , ag2}〉| = 1 + 2 = 3 perfect!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 164/238

Planning Graphs for Relaxed Plans
Consider three atoms p, g1, and g2, and three actions ap, ag1 , and ag2 , that make them true,
respectively. Precondition of ap is empty, but both ag1 and = ag2 require atom p to be true.
Goal is {g1, g2} and initial state I = ∅ (nothing is true).

P0 A0 P1 A1 P2

True ap p

ag1

ag2

g1

p

g2

• h∗(I) = 3 (optimal plan is ap · ag1 · ag2).

• hmax(I) = max{h(g1; I), h(g1; I)} = 2 (goal appears at level 2 - optimistic!)

• hadd(I) = h(g1; I) + h(g1; I) = 2 + 2 = 4 (pessimistic, counts ap twice!)

• hFF(I) = |〈{ap} ∪ {ag1 , ag2}〉| = 1 + 2 = 3 perfect!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 164/238

Planning Graphs for Relaxed Plans
Consider three atoms p, g1, and g2, and three actions ap, ag1 , and ag2 , that make them true,
respectively. Precondition of ap is empty, but both ag1 and = ag2 require atom p to be true.
Goal is {g1, g2} and initial state I = ∅ (nothing is true).

P0 A0 P1 A1 P2

True ap p

ag1

ag2

g1

p

g2

• h∗(I) = 3 (optimal plan is ap · ag1 · ag2).

• hmax(I) = max{h(g1; I), h(g1; I)} = 2 (goal appears at level 2 - optimistic!)

• hadd(I) = h(g1; I) + h(g1; I) = 2 + 2 = 4 (pessimistic, counts ap twice!)

• hFF(I) = |〈{ap} ∪ {ag1 , ag2}〉| = 1 + 2 = 3 perfect!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 164/238

Planning Graphs for Relaxed Plans
Consider three atoms p, g1, and g2, and three actions ap, ag1 , and ag2 , that make them true,
respectively. Precondition of ap is empty, but both ag1 and = ag2 require atom p to be true.
Goal is {g1, g2} and initial state I = ∅ (nothing is true).

P0 A0 P1 A1 P2

True ap p

ag1

ag2

g1

p

g2

• h∗(I) = 3 (optimal plan is ap · ag1 · ag2).

• hmax(I) = max{h(g1; I), h(g1; I)} = 2 (goal appears at level 2 - optimistic!)

• hadd(I) = h(g1; I) + h(g1; I) = 2 + 2 = 4 (pessimistic, counts ap twice!)

• hFF(I) = |〈{ap} ∪ {ag1 , ag2}〉| = 1 + 2 = 3 perfect!
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 164/238

Other heuristics...

Key development in planning in the 90’s...

Relaxations • h+ (Hoffmann & Nebel, ’01)
• hmax and hadd (Bonet & Geffner, ’01)
• hFF (Hoffmann & Nebel, ’01)
• hpmax (Mirkis & Domshlak, ’07)
• hsa (Keyder & Geffner, ’08

Critical paths • hm (Haslum & Geffner, ’00) with h1 = hmax

Abstractions • PDBs (Edelkamp, ’01; Haslum et al., ’05, ’07)
• Merge & Shrink (Helmert et al., ’07,’14; Katz et al, ’12; Sievers et al., ’14)

Landmarks • Landmark count (Hoffmann et al., ’04)
• hL and hLA (Karpas & Domshlak, ’09)
• LM-cut (Helmert & Domshlak, ’10)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 165/238

Example
Problem P = 〈F, I,O,G〉 where:
• F = {pi, qi | i = 0, . . . , n}
• I = {p0, q0}
• G = {pn, qn}
• O contains actions ai and bi, i = 0, . . . , n− 1:

I Pre(ai) = {pi}, Add(ai) = {pi+1}, Del(ai) = {pi}
I Pre(bi) = {qi}, Add(bi) = {qi+1}, Del(bi) = {qi}

Question-Circle Questions
For the initial state I:

1 What is relaxed plan obtained for hFF(I)?
2 What is hFF(I)?

3 What happens if we have actions ci for i even:
I Pre(ci) = {pi, qi}, Add(ci) = {pi+1, qi+1}, Del(ci) = {pi, qi}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 166/238

Example
Problem P = 〈F, I,O,G〉 where:
• F = {pi, qi | i = 0, . . . , n}
• I = {p0, q0}
• G = {pn, qn}
• O contains actions ai and bi, i = 0, . . . , n− 1:

I Pre(ai) = {pi}, Add(ai) = {pi+1}, Del(ai) = {pi}
I Pre(bi) = {qi}, Add(bi) = {qi+1}, Del(bi) = {qi}

Question-Circle Questions
For the initial state I:

1 What is relaxed plan obtained for hFF(I)?
2 What is hFF(I)?
3 What happens if we have actions ci for i even:

I Pre(ci) = {pi, qi}, Add(ci) = {pi+1, qi+1}, Del(ci) = {pi, qi}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 166/238

Exercise
Problem P = 〈F, I,O,G〉 where:
• F = {pi, qi | i = 0, . . . , n}
• I = {p0, q0}
• G = {pn, qn}
• O contains actions ai, bi, and ci:

I Pre(ai) = {pi}, Add(ai) = {pi+1}, Del(ai) = {pi}, for i = 0, . . . , n− 1.
I Pre(bi) = {qi}, Add(bi) = {qi+1}, Del(bi) = {qi}, for i = 0, . . . , n− 1.
I Pre(ci) = {pi, qi}, Add(ci) = {pi+1, qi+1}, Del(ci) = {pi, qi}, for i = 0, . . . , n− 1 such that

i mod 2 = 0 (that is, action ci exists when i is even).

Question-Circle Questions

1 Calculate h+(I).
2 Calculate hadd(I).
3 Calculate hmax(I).
4 Calculate hFF(I). What is relaxed plan obtained for hFF(I)?
5 Calculate h∗(I).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 167/238

Example Systems
HSP [Bonet and Geffner, AI-01]

1 Search algorithm: Greedy best-first search.
2 Search control: hadd.

FF [Hoffmann and Nebel ,JAIR-01]

1 Search algorithm: Enforced hill-climbing.
2 Search control: hFF extracted from hmax supporter function; helpful actions pruning (basically expand

only those actions contained in the relaxed plan).

LAMA [Richter and Westphal, JAIR-10]

1 Search algorithm: Multiple-queue greedy best-first search.
2 Search control: hFF + a landmarks heuristic (similar to goal counting); for each, one search queue all

actions, one search queue only helpful actions.

BFWS [Lipovetzky and Geffner, AAAI-17]

1 Search algorithm: best-first width search.
2 Search control: novelty + variant of hFF + goal counting.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 168/238

Modern Planners: EHC Search, Helpful Actions, Landmarks

• First generation of heuristic search planners like HSP, searched the graph defined by
state model S(P) using standard search algorithms like Greedy Best-First or WA*, and
heuristics like hadd.

• Second generation planners like FF and LAMA beyond this in two ways:
1 They exploit the structure of the heuristic and/or problem further:

I Helpful Actions: actions most relevant in relaxation.
I Landmarks: implicit problem subgoals.

2 They use novel search algorithms:
I Enforced Hill Climbing (EHC).
I Multi-Queue Best First Search.

• The result is that they can solve huge problems, very fast. Not always though...

• The delete relaxation is still used at large, specially since the wins of LAMA in the
satisficing planning tracks of IPC’08 and IPC’11.

• More generally, the relaxation principle is very generic and applicable in many contexts.
This is where all started: Planning as Heuristic Search [Bonet and Geffner, AI-01].

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 169/238

Modern Planners: EHC Search, Helpful Actions, Landmarks

• First generation of heuristic search planners like HSP, searched the graph defined by
state model S(P) using standard search algorithms like Greedy Best-First or WA*, and
heuristics like hadd.

• Second generation planners like FF and LAMA beyond this in two ways:
1 They exploit the structure of the heuristic and/or problem further:

I Helpful Actions: actions most relevant in relaxation.
I Landmarks: implicit problem subgoals.

2 They use novel search algorithms:
I Enforced Hill Climbing (EHC).
I Multi-Queue Best First Search.

• The result is that they can solve huge problems, very fast. Not always though...
• The delete relaxation is still used at large, specially since the wins of LAMA in the

satisficing planning tracks of IPC’08 and IPC’11.
• More generally, the relaxation principle is very generic and applicable in many contexts.

This is where all started: Planning as Heuristic Search [Bonet and Geffner, AI-01].

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 169/238

Search in the FF Planner

• Heuristic in FF is hFF(s) given by size |π′(s)| of relaxed plan π′(s) for P ′(s).

• The search in FF split in two phases:
1 First phase, called EHC (Enforced Hill Climbing) is incomplete but fast:

I Starting with s = s0, EHC does a breadth-first search from s using only “helpful actions”
until a state s′ is found such that hFF(s

′) < hFF(s).
I If such a state s′ is found, the process is repeated starting with s = s′. Else, the EHC fails,

and the second phase is triggered.
2 Second phase is a Greedy Best-First search guided by hFF: complete but slow.

• Action deemed helpful in s if applicable in s and adds a goal or precondition of action in
“relaxed plan” π′(s).

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 170/238

Part 2: Classical Planning: Methods

4 Complexity of Planning

5 Planning as heuristic search
Relaxations
Delete-relaxation h+

From h+ to hmax, hadd and hFF

State of the art classical planners

6 Planning as SAT

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 171/238

Part 2: Classical Planning: Methods

4 Complexity of Planning

5 Planning as heuristic search
Relaxations
Delete-relaxation h+

From h+ to hmax, hadd and hFF

State of the art classical planners

6 Planning as SAT

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 171/238

Planning as SAT
• SAT: determine if there is a truth assignment that satisfies a set of clauses:

(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z) ∧ ...

• Maps planning problem P = 〈F,O, I,G〉 with horizon n into a set of clauses C(P, n),
solved by SAT solvers.

I Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

• Formula/theory C(P, n) includes variables p0, p1, . . . , pn and a0, a1, . . . , an−1 for each
p ∈ F and a ∈ O.

I pi: atom p is true at time step i.
I ai: action a is executed/selected at time step i.

• C(P, n) satisfiable iff there is a plan of length no greater than n.

• Such a plan can be read from truth valuation that satisfies C(P, n).

• SAT-based planners like SATPLAN or Madagascar use this encoding.

I Winners of the 2004 and 2006 IPCs optimal track; 2nd in 2014 agile track; part of top
portfolio planners in 2023.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 172/238

https://users.aalto.fi/~rintanj1/jussi/satplan.html

Planning as SAT
• SAT: determine if there is a truth assignment that satisfies a set of clauses:

(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z) ∧ ...

• Maps planning problem P = 〈F,O, I,G〉 with horizon n into a set of clauses C(P, n),
solved by SAT solvers.

I Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

• Formula/theory C(P, n) includes variables p0, p1, . . . , pn and a0, a1, . . . , an−1 for each
p ∈ F and a ∈ O.

I pi: atom p is true at time step i.
I ai: action a is executed/selected at time step i.

• C(P, n) satisfiable iff there is a plan of length no greater than n.

• Such a plan can be read from truth valuation that satisfies C(P, n).

• SAT-based planners like SATPLAN or Madagascar use this encoding.

I Winners of the 2004 and 2006 IPCs optimal track; 2nd in 2014 agile track; part of top
portfolio planners in 2023.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 172/238

https://users.aalto.fi/~rintanj1/jussi/satplan.html

Planning as SAT
• SAT: determine if there is a truth assignment that satisfies a set of clauses:

(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z) ∧ ...

• Maps planning problem P = 〈F,O, I,G〉 with horizon n into a set of clauses C(P, n),
solved by SAT solvers.
I Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

• Formula/theory C(P, n) includes variables p0, p1, . . . , pn and a0, a1, . . . , an−1 for each
p ∈ F and a ∈ O.

I pi: atom p is true at time step i.
I ai: action a is executed/selected at time step i.

• C(P, n) satisfiable iff there is a plan of length no greater than n.

• Such a plan can be read from truth valuation that satisfies C(P, n).

• SAT-based planners like SATPLAN or Madagascar use this encoding.

I Winners of the 2004 and 2006 IPCs optimal track; 2nd in 2014 agile track; part of top
portfolio planners in 2023.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 172/238

https://users.aalto.fi/~rintanj1/jussi/satplan.html

Planning as SAT
• SAT: determine if there is a truth assignment that satisfies a set of clauses:

(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z) ∧ ...

• Maps planning problem P = 〈F,O, I,G〉 with horizon n into a set of clauses C(P, n),
solved by SAT solvers.
I Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

• Formula/theory C(P, n) includes variables p0, p1, . . . , pn and a0, a1, . . . , an−1 for each
p ∈ F and a ∈ O.

I pi: atom p is true at time step i.
I ai: action a is executed/selected at time step i.

• C(P, n) satisfiable iff there is a plan of length no greater than n.

• Such a plan can be read from truth valuation that satisfies C(P, n).

• SAT-based planners like SATPLAN or Madagascar use this encoding.

I Winners of the 2004 and 2006 IPCs optimal track; 2nd in 2014 agile track; part of top
portfolio planners in 2023.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 172/238

https://users.aalto.fi/~rintanj1/jussi/satplan.html

Planning as SAT
• SAT: determine if there is a truth assignment that satisfies a set of clauses:

(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z) ∧ ...

• Maps planning problem P = 〈F,O, I,G〉 with horizon n into a set of clauses C(P, n),
solved by SAT solvers.
I Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

• Formula/theory C(P, n) includes variables p0, p1, . . . , pn and a0, a1, . . . , an−1 for each
p ∈ F and a ∈ O.
I pi: atom p is true at time step i.

I ai: action a is executed/selected at time step i.

• C(P, n) satisfiable iff there is a plan of length no greater than n.

• Such a plan can be read from truth valuation that satisfies C(P, n).

• SAT-based planners like SATPLAN or Madagascar use this encoding.

I Winners of the 2004 and 2006 IPCs optimal track; 2nd in 2014 agile track; part of top
portfolio planners in 2023.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 172/238

https://users.aalto.fi/~rintanj1/jussi/satplan.html

Planning as SAT
• SAT: determine if there is a truth assignment that satisfies a set of clauses:

(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z) ∧ ...

• Maps planning problem P = 〈F,O, I,G〉 with horizon n into a set of clauses C(P, n),
solved by SAT solvers.
I Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

• Formula/theory C(P, n) includes variables p0, p1, . . . , pn and a0, a1, . . . , an−1 for each
p ∈ F and a ∈ O.
I pi: atom p is true at time step i.
I ai: action a is executed/selected at time step i.

• C(P, n) satisfiable iff there is a plan of length no greater than n.

• Such a plan can be read from truth valuation that satisfies C(P, n).

• SAT-based planners like SATPLAN or Madagascar use this encoding.

I Winners of the 2004 and 2006 IPCs optimal track; 2nd in 2014 agile track; part of top
portfolio planners in 2023.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 172/238

https://users.aalto.fi/~rintanj1/jussi/satplan.html

Planning as SAT
• SAT: determine if there is a truth assignment that satisfies a set of clauses:

(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z) ∧ ...

• Maps planning problem P = 〈F,O, I,G〉 with horizon n into a set of clauses C(P, n),
solved by SAT solvers.
I Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

• Formula/theory C(P, n) includes variables p0, p1, . . . , pn and a0, a1, . . . , an−1 for each
p ∈ F and a ∈ O.
I pi: atom p is true at time step i.
I ai: action a is executed/selected at time step i.

• C(P, n) satisfiable iff there is a plan of length no greater than n.

• Such a plan can be read from truth valuation that satisfies C(P, n).

• SAT-based planners like SATPLAN or Madagascar use this encoding.

I Winners of the 2004 and 2006 IPCs optimal track; 2nd in 2014 agile track; part of top
portfolio planners in 2023.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 172/238

https://users.aalto.fi/~rintanj1/jussi/satplan.html

Planning as SAT
• SAT: determine if there is a truth assignment that satisfies a set of clauses:

(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z) ∧ ...

• Maps planning problem P = 〈F,O, I,G〉 with horizon n into a set of clauses C(P, n),
solved by SAT solvers.
I Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

• Formula/theory C(P, n) includes variables p0, p1, . . . , pn and a0, a1, . . . , an−1 for each
p ∈ F and a ∈ O.
I pi: atom p is true at time step i.
I ai: action a is executed/selected at time step i.

• C(P, n) satisfiable iff there is a plan of length no greater than n.

• Such a plan can be read from truth valuation that satisfies C(P, n).

• SAT-based planners like SATPLAN or Madagascar use this encoding.

I Winners of the 2004 and 2006 IPCs optimal track; 2nd in 2014 agile track; part of top
portfolio planners in 2023.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 172/238

https://users.aalto.fi/~rintanj1/jussi/satplan.html

Planning as SAT
• SAT: determine if there is a truth assignment that satisfies a set of clauses:

(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z) ∧ ...

• Maps planning problem P = 〈F,O, I,G〉 with horizon n into a set of clauses C(P, n),
solved by SAT solvers.
I Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

• Formula/theory C(P, n) includes variables p0, p1, . . . , pn and a0, a1, . . . , an−1 for each
p ∈ F and a ∈ O.
I pi: atom p is true at time step i.
I ai: action a is executed/selected at time step i.

• C(P, n) satisfiable iff there is a plan of length no greater than n.

• Such a plan can be read from truth valuation that satisfies C(P, n).

• SAT-based planners like SATPLAN or Madagascar use this encoding.

I Winners of the 2004 and 2006 IPCs optimal track; 2nd in 2014 agile track; part of top
portfolio planners in 2023.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 172/238

https://users.aalto.fi/~rintanj1/jussi/satplan.html

Planning as SAT
• SAT: determine if there is a truth assignment that satisfies a set of clauses:

(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z) ∧ ...

• Maps planning problem P = 〈F,O, I,G〉 with horizon n into a set of clauses C(P, n),
solved by SAT solvers.
I Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

• Formula/theory C(P, n) includes variables p0, p1, . . . , pn and a0, a1, . . . , an−1 for each
p ∈ F and a ∈ O.
I pi: atom p is true at time step i.
I ai: action a is executed/selected at time step i.

• C(P, n) satisfiable iff there is a plan of length no greater than n.

• Such a plan can be read from truth valuation that satisfies C(P, n).

• SAT-based planners like SATPLAN or Madagascar use this encoding.
I Winners of the 2004 and 2006 IPCs optimal track; 2nd in 2014 agile track; part of top

portfolio planners in 2023.
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 172/238

https://users.aalto.fi/~rintanj1/jussi/satplan.html

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I

• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:

I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:

I pi ∧
∧

a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I
• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:

I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:

I pi ∧
∧

a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I
• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:

I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:

I pi ∧
∧

a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I
• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:
I ai ⊃ pi for p ∈ Prec(a)

I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:

I pi ∧
∧

a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I
• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:
I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)

I ai ⊃ ¬pi+1 for each p ∈ Del(a)
• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)

stand for the actions that add and delete p, resp.:

I pi ∧
∧

a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I
• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:
I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:

I pi ∧
∧

a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I
• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:
I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:

I pi ∧
∧

a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I
• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:
I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:
I pi ∧

∧
a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I
• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:
I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:
I pi ∧

∧
a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I
• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:
I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:
I pi ∧

∧
a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I
• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:
I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:
I pi ∧

∧
a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I
• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:
I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:
I pi ∧

∧
a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I
• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:
I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:
I pi ∧

∧
a∈O(p−) ¬ai ⊃ pi+1

I ¬pi ∧
∧

a∈O(p+) ¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

If theory C(P, n) is SAT: plan can be recovered from the truth assignment to atoms ai.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, …

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/238

From SAT to Answer Set Programming (ASP)

• ASP is a logic programming paradigm for knowledge representation and reasoning.
I More convenient representation than SAT: predicate logic (i.g., variables!)
I Based on stable model semantics for logic programs with negation as failure.
I Related to Constraint Programming and CSP.

• ASP encodings for planning similar to SAT encodings, but use rules instead of clauses:
{do(A, T) : action(A)} = 1 :- step(T). % exactly one action per step
:- do(A, T), prec(A, P), not holds(P, T-1). % precondition applies!

holds(P, 0) :- init(P). % define init state
holds(P, T) :- do(A, T-1), add(A, P). % add effects
holds(F, T) :- holds(F, T-1), step(T), not do(A, T-1) : del(A, F). % frame

:- goal(p), not holds(p, k). % goal at last step k

Problem instance encoded via facts action(A), prec(A,P), add(A,P), del(A,P), init(P),
goal(P), and step(T) — e.g., prec(unstack(A,B), on(A,B)).

• ASP solvers compute stable models (answer sets) that represent plans.
I Plans extracted from atoms of the form do(A,T) in the stable model.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 174/238

Blocks Worlds in ASP
Planner is a fixed ASP program:
{do(A, T) : action(A)} = 1 :- step(T). % exactly one action per step
:- do(A, T), prec(A, P), not holds(P, T-1). % precondition applies!

holds(P, 0) :- init(P). % define init state
holds(P, T) :- do(A, T-1), add(A, P). % add effects
holds(F, T) :- holds(F, T-1), step(T), not do(A, T-1) : del(A, F). % frame

:- goal(p), not holds(p, k). % goal at last step k

Problem instance encoding:
block(a;b;c;d).
init(on(a,b)). init(on(b,c)). init(ontable(c)). init(ontable(d)).
goal(on(a,d)). goal(on(d,b)). goal(on(b,c)).

action(stack(X,Y)) :- block(X), block(Y), X != Y.
prec(stack(X,Y), clear(Y)) :- block(X), block(Y), X != Y.
prec(stack(X,Y), holding(X)) :- block(X), block(Y), X != Y.
add(stack(X,Y), on(X,Y)) :- block(X), block(Y), X != Y.
del(stack(X,Y), holding(X);clear(X)) :- block(X), block(Y), X != Y.
...
step(1..10).
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 175/238

ASP for Planning youtube tutorial

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 176/238

https://youtu.be/Rn-jPtQjFro?si=fkwcU7_zkrA-NO7K

Plasp: Tools for planning in ASP using Clingo

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 177/238

https://github.com/potassco/plasp

Lots of planners in IPC 2023

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 178/238

	Classical Planning: Languages
	Motivation
	State Models and Search
	Planning Languages

	Classical Planning: Methods
	Complexity of Planning
	Planning as heuristic search
	Relaxations
	Delete-relaxation h+
	From h+ to h, h add add add add and h FF FF FF FF
	State of the art classical planners

	Planning as SAT

