Al Classical and Non-deterministic Planning: Model-based
Autonomous Behavior

Sebastian Sardina

School of Computing Technologies
RMIT University

Julio 28 - Agosto 1 2025

® RMIT

UNIVERSITY DAl et Q Bl = e Ciercis formitics

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 1/235

Part |

Non-deterministic Planning

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 171/235

Part 1. Non-deterministic Planning

Non-deterministic Planning
Solution Concepts for FOND Planning

Solving FOND Planning
m FOND Planning using Classical Planners
m FOND Planning via SAT
m Compact Policies via ASP/SAT

Conditional Fairness

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 172/235

Part 1. Non-deterministic Planning

Non-deterministic Planning

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 172/235

Planning Models: Vanilla Model for Classical Al Planning

e finite and discrete state space S
® 3 known initial state s € S
® aset Sg C S of goal states
* actions A(s) C A applicable in each s € S
* a deterministic transition function s’ = f(a, s) for a € A(s)
® positive action costs c(a, s)
A solution/plan is seq. of applicable actions © = ay, . .., a, that maps sy into Sg.

Plan is optimal if it minimizes the sum of action costs.

i) Different models obtained by relaxing assumptions in bold.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/235

Planning Models: Vanilla Model for Classical Al Planning

e finite and discrete state space S
® 3 known initial state s;p € S
® aset Sg C S of goal states
e actions A(s) C A applicable in each s € S
¢ a deterministic transition function s’ = f(a,s) for a € A(s) “©
® positive action costs c(a, s)
A solution/plan is seq. of applicable actions © = ay, . .., a, that maps sy into Sg.

Plan is optimal if it minimizes the sum of action costs.

i) Different models obtained by relaxing assumptions in bold.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 173/235

Planning with non-deterministic actions

What if an action may yield different effect outcomes?

¢ Slipery floor: you may slip and fall (and maybe hurt yourself).

e Slipery blocksworld:
if you stack or unstack a block, it may fall down to the table.

® Dice rolling: if you roll a die, it may yield different outcomes:
1,2,3,4,5 or 6.

® Robot operation: when using the gripper, it may succeed or
fail to pick an object (and may need to retry).

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 174/235

Planning with non-deterministic actions

What if an action may yield different effect outcomes?

Slipery floor: you may slip and fall (and maybe hurt yourself).

Slipery blocksworld:
if you stack or unstack a block, it may fall down to the table.

Dice rolling: if you roll a die, it may yield different outcomes:
1,2,3,4,5 or 6.

Robot operation: when using the gripper, it may succeed or
fail to pick an object (and may need to retry).

Finding parking: when visiting a block you may or may not find parking space (if not,
keep going around the block).

Walking on beam: if you do a step on a beam, you may advance or fall down.

Walking on corridor: if you do a step you may or may not be at the end of the corridor.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 174/235

Example: Harbor Management FOND Problem

Very simple harbor management domain:
transit3
Unload a single item from a ship.
Park the item in a storage facility.

Deliver it to gates (to be loaded into
$
tracks). ’. -

parking2

back

on_ship at_harbor

S , gl . gate2

transitl

Storage and gates may be unavailable, o
but we can always wait and move))) .
. (Example 11.1 in Acting, Planning, and Learning
containers around.
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 175/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Planning with Markov Decision Processes

Goal MDPs are fully observable, probabilistic state models:

a state space S

initial state sp € S

aset G C S of goal states

actions A(s) C A applicable in each state s € S

transition probabilities P, (s’ | s) for s € S and a € A(s) <
action costs c(a,s) >0

REoBENE

® Solutions are functions (called “policies”) mapping states into actions; 7 : S — A
» 7(s) states what action to do in state s

e Optimal solutions minimize expected cost to goal.

* Reward-based MDPs involve rewards instead of costs, and discount factor -y € [0,1)
in place of goals. They underlie theory of RL. (&

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 176/235

FOND Planning: Fully-observable Non-Deterministic Planning

A FOND state model is like the “logical” counterpart of Goal MDPs:

a state space S

initial state sp € S

aset G C S of goal states

actions A(s) C A applicable in each state s € §

non-det state transition function F': successors s’ € F(a,s), s€ S, a € A(s) O
action costs c(a, s) =1

REoBENE

* Main change from Classical Planning: F(a, s) maps to set of possible states (not to
one unique state).
» Nature decides what next state is reached after action a is applied in state s —
non-determinism.

» ... but agent will observe the state reached after a is applied.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 177/235

FOND Planning: Fully-observable Non-Deterministic Planning

A FOND state model is like the “logical” counterpart of Goal MDPs:

a state space S

initial state sp € S

aset G C S of goal states

actions A(s) C A applicable in each state s € §

non-det state transition function F': successors s’ € F(a,s), s€ S, a € A(s) O
action costs c(a, s) =1

REoBENE

* Main change from Classical Planning: F(a, s) maps to set of possible states (not to
one unique state).
» Nature decides what next state is reached after action a is applied in state s —
non-determinism.

» ... but agent will observe the state reached after a is applied.

* Main change from MDPs: possible transitions s € F'(a, s) not weighted by probabilities.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 177/235

Fully Observable Non-Deterministic Planning (FOND)

Initial State
L Plannin
Non-deterministic &
System Plan?
Operators
(Solver)
Goal State

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 178/235

Fully Observable Non-Deterministic Planning (FOND)

achieves goal

Initial State from initial state
- using operators
N Planning
Non-deterministic
System Plan?
Operators
(Solver)
Goal State

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 178/235

Fully Observable Non-Deterministic Planning (FOND)

set of possible | |nitial State
effects

Operators

Goal State

Planning

System
(Solver)

achieves goal
from initial state

using operators

Plan?

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

178/235

Example: Does it have a solution?

® |s it possible to always deliver the transit3
containers to the gates?

move

® If so, what is the sequence of
actions?

arking2
LU 4 deliver,

on_ship

S gl . gate2

transitl

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 179/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: Does it have a solution?

® |s it possible to always deliver the transit3
containers to the gates? ?

move

® If so, what is the sequence of
actions?

on_ship
S

transitl

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 179/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: Does it have a solution?

® |s it possible to always deliver the transit3
containers to the gates? ?

® If so, what is the sequence of
actions? X

Need to know what to do in each state!

on_ship

S gl . gate2

transitl

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 179/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: Does it have a solution?

transit3

® |s it possible to always deliver the
containers to the gates? ?

® If so, what is the sequence of

actions? X

Need to know what to do in each state!

on_ship
S

Policy

A policy 7 is a partial function from
states s into actions a; thatis, 7 : S — A.

transitl
(when undefined, agent stops acting) transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 179/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: Does it have a solution?

® |s it possible to always deliver the
containers to the gates? ?

® If so, what is the sequence of

actions? X

Need to know what to do in each state!

Policy

A policy 7 is a partial function from

states s into actions a; thatis, 7 : S — A.

(when undefined, agent stops acting)

=) |s there a “good” policy 77?

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

transit3

back parking2

deliver,

on_ship

S gl . gate2

transitl

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

179/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: Does 7 solve the task?

Policy

S m1($)

on_ship | unload
at_harbor | park

parkingl | deliver

parking2 back

transitl move
transit2 move
transit3 move

transit3

on_ship

S gl . gate2

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 180/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: Does 7 solve the task?

Policy

S m1($)

on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back

transitl move
transit2 move
transit3 move

transit3

on_ship

S gl . gate2

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 180/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Policy X

Example: Does 7 solve the task?

S m1($)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transitl move
transit2 move
transit3 move

transit3

on_ship
S

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 180/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: What about 757

transit3

POIicy Uy move
S 2 (8) . gatel

on_ship | unload

at_harbor | park
parkingl | deliver B
parking2 | deliver s gate2
transitl move
transit2 move
transit3 move

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

transitl

transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

181/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: What about 757

transit3

Policy 7o

S ma($)

on_ship | unload
at_harbor | park

parkingl | deliver

on_ship

parking2 | deliver s ()] gate2
transitl move

transit2 move

transit3 move

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 181/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: Which one is better?

Policy 9
S 7(s)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transitl move
transit2 move
transit3 move
Policy 74
S 7(s)
on_ship | unload
at_harbor | park

on_ship
S

transit3

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 182/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Policy 9

Example: Which one is better?

S 7(s)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transitl move
transit2 move
transit3 move

Policy 74 X

S 7(s)
on_ship | unload
at_harbor | park

on_ship
S

transit3

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 182/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example:

Policy

S ma($)
on_ship | unload

at_harbor | park
parkingl | deliver
parking2 | deliver

transit2 move

transit3 move

What if transitl is a dead-end?

transit3

parking2

back

on_ship

N
s . gate2

at_harbor

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 183/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: What if transitl is a dead-end?

transit3
Policy X
back parking2 moye
S ma(s)
on_ship | unload () gate1

at_harbor | park
parkingl | deliver

)) on_ship at_harbor =\
park|n.g2 deliver S . gate2
transit2 move
transit3 move

transitl

Do)

But could 7 succeed (sometimes)? =

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 183/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: What if parking2 is not connected to gates?

Policy m,

S m1(8)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transit2 move
transit3 move

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

transit3

back parking2

on_ship
S

at_harbor

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

184/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: What if parking2 is not connected to gates?

Policy m, X

S m1(8)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transit2 move
transit3 move

Storage parkingl may never be available!

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

transit3

back parking2

on_ship
S

at_harbor

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

184/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: What if parking2 is not connected to gates?

transit3
Policy m, X

S m1(8)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transit2 | move A

S)
0 . gate2
transit3 move

back parking2

at_harbor

Storage parkingl may never be available!

transitl

But, what if we know parkingl would
eventually becomes available? =

transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 184/235

https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

So, some lessons...

e (lassical plans as sequences of actions are not
enough to solve FOND problems.

® \We need to use a policy that maps states into transits
actions.

» More like “programs” with conditionals and loops!

parking2

back

® Some (bad) policies are better than others.

unload

at_harbor

® Some policies may achieve the goal, but not 2
always. ’

® Some policies will achieve the goal if environment .
is not too adversarial — not unfair. tranit

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 185/235

So, some lessons...

e (lassical plans as sequences of actions are not
enough to solve FOND problems.

® \We need to use a policy that maps states into transits
actions.

» More like “programs” with conditionals and loops!

parking2

back

® Some (bad) policies are better than others.

unload

at_harbor

® Some policies may achieve the goal, but not 2
always. ’

® Some policies will achieve the goal if environment B
is not too adversarial — not unfair. tranit

This seems way more complex planning! &

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 185/235

Planning is hard!
R

ELEMENTARY Non-deterministic planning)

2EXPTIME
EXPSPACE

Classical
Planning

Classical

o NP-C Planning
(poly-plans)
RN
N %,
\ @
NN S
NN
A

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 186/235

Kinds of Solution Policies

il acyclic ,
<afe policies ~a~
. policies li
solution | ;}(Z);:i(]:(i:es Qc_. Goal States

policies

unsafe <i
policies ¢

Acting, Planning, and Learning Ghallab, Nau, Traverso 2025

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 187/235

Part 1. Non-deterministic Planning

Non-deterministic Planning
Solution Concepts for FOND Planning

Solving FOND Planning
m FOND Planning using Classical Planners
m FOND Planning via SAT
m Compact Policies via ASP/SAT

Conditional Fairness

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 188/235

Part 1. Non-deterministic Planning

Solution Concepts for FOND Planning

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 188/235

FOND Planning: Solution Concepts

Running policy 7 from state s yields trajectories runs:

* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].
* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)
FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 189/235

FOND Planning: Solution Concepts

Running policy 7 from state s yields trajectories runs:

* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].
* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)
FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 189/235

FOND Planning: Solution Concepts

Running policy 7 from state s yields trajectories runs:

* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].
* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)
FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 189/235

FOND Planning: Solution Concepts
Running policy 7 from state s yields trajectories runs:

* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].
* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)
FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.
> All executions are guaranteed to reach the goal (in a known bounded number of actions!).

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 189/235

FOND Planning: Solution Concepts

Running policy 7 from state s yields trajectories runs:

* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].
* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)
FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.

> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 189/235

FOND Planning: Solution Concepts
Running policy 7 from state s yields trajectories runs:

* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].

* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)

FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.

> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)

7 is strong cyclic solution if for each state s reachable from sy with a m-trajectory,
there is a m-trajectory from s to goal.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 189/235

FOND Planning: Solution Concepts
Running policy 7 from state s yields trajectories runs:

* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].

* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)

FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.

> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)

7 is strong cyclic solution if for each state s reachable from sy with a m-trajectory,
there is a m-trajectory from s to goal.

» Always a possibility to reach the goal.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 189/235

FOND Planning: Solution Concepts
Running policy 7 from state s yields trajectories runs:

* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].

* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)

FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.

> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)

7 is strong cyclic solution if for each state s reachable from sy with a m-trajectory,
there is a m-trajectory from s to goal.

» Always a possibility to reach the goal.
» Goal will be achieved if environment is not “adversarial”

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 189/235

FOND Planning: Solution Concepts

Running policy 7 from state s yields trajectories runs:
* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].

* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)

FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.
> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)

7 is strong cyclic solution if for each state s reachable from sy with a m-trajectory,
there is a m-trajectory from s to goal.

» Always a possibility to reach the goal.
» Goal will be achieved if environment is not “adversarial”
> Plans may have conditionals & loops!

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 189/235

Weak Plans

transit3

S ™ (S) back parking2 A s
on_ship | unload <
at_harbor | park O\ gatet

parkingl | deliver
parking?2 back

on_ship at_harbor
transit2 move s gt O/ eate
transit3 move
transitl
v/ Policy 7 is a weak plan as there is a trajectory that reaches the goal. w2

» {on_ship}, {at_harbor}, {parkingl}, {gatel}

® But 7 is not a strong plan.
» {on_ship}, {at_harbor}, {parking2}, {at_harbor}, {parking2}, {at_harbor}, ...

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 190/235

What about strong cyclic?

S 1($)

on_ship | unload
at__harbor | park
parkingl | deliver
parking2 back

transitl move
transit2 move
transit3 move

transit3

parking2 1

back
del .
eliver

unload

on_ship at_harbor

s i () eate2

transitl

transit2

Policy 7 is strong cyclic solution if for each state s reachable from sy with a 7-trajectory,

there is a m-trajectory from s to goal.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 191/235

What about strong cyclic?

transit3

S 1($)

on_ship | unload
at__harbor | park

parkingl | deliver
parking2 back

parking2 1

back
del .
eliver

unload

. on_ship at_harbor

trans!tl move : ; ®/::-
transit?2 move

transit3 move

transitl

transit2

Policy 7 is strong cyclic solution if for each state s reachable from sy with a 7-trajectory,
there is a m-trajectory from s to goal.

* Yes!, policy never “loses” the possibility to get the goal /&

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 191/235

What about strong cyclic?

transit3

S 1($)

on_ship | unload
at__harbor | park

parkingl | deliver
parking2 back

parking2 1

back
del .
eliver

unload

. on_ship at_harbor

trans!tl move : ; ®/::-
transit?2 move

transit3 move

transitl

transit2

Policy 7 is strong cyclic solution if for each state s reachable from sy with a 7-trajectory,
there is a m-trajectory from s to goal.

* Yes!, policy never “loses” the possibility to get the goal /&
® But, it may loop “forever” in some states.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 191/235

What about strong cyclic?

transit3

S 1($)

on_ship | unload
at__harbor | park

parkingl | deliver
parking2 back

parking2 deliver
—)

back

unload

. on_ship at_harbor

trans!tl move : ; ®/::-
transit?2 move

transit3 move

transitl

transit2

Policy 7 is strong cyclic solution if for each state s reachable from sy with a 7-trajectory,
there is a m-trajectory from s to goal.

* Yes!, policy never “loses” the possibility to get the goal /&
® But, it may loop “forever” in some states.
® We can make 7 strong by changing it to 7 (parking2) = deliver.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 191/235

Strong cyclic policies: when do they work?

© Is there a strong plan?

transit3

move
parking2

back

unload

on_ship at_harbor

=
s i . gate2

transitl

transit2

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 192/235

Strong cyclic policies: when do they work?

© Is there a strong plan? No!

transit3

move
parking2

back

unload

on_ship at_harbor

=
s i . gate2

transitl

transit2

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 192/235

Strong cyclic policies: when do they work?

© Is there a strong plan? No!

Best we can do is: transit3
S 7r1(s)
On_ship unload back parking2 sk
at_harbor | park 3
. gatel

parkingl | deliver
parking2 back

transitl move onehip
transit2 move 8 i O/ eate2
transit3 move

unload

at_harbor

transitl

© When will this policy reach the goal?

transit2

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 192/235

Strong cyclic policies:

© Is there a strong plan? No!
Best we can do is:

S 7T1(8)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transitl move
transit2 move
transit3 move

© When will this policy reach the goal?
When executed in “fair” environments!

Fairness Environments

when do they work?

transit3

parking2

back

unload

on_ship at_harbor

—
S gl . gate2

transitl

transit2

A trajectory o is an unfair execution of 7 if a state s appears infinitely often in ¢ but some
outcome state s’ € F(w(a), s) only appears a finite number of times in o.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

192/235

Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

Fairness Environments
A trajectory o is an unfair execution of 7 if a state s appears infinitely often in ¢ but some
outcome state s’ € F'(w(a), s) only appears a finite number of times in o.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 193/235

Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

© What type of environments?

Fairness Environments
A trajectory o is an unfair execution of 7 if a state s appears infinitely often in ¢ but some
outcome state s’ € F'(w(a), s) only appears a finite number of times in o.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 193/235

Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

RY UNTIL SUCCESS

© What type of environments?
® Where each effect listed has indeed
non-zero probability.

¢ Re-trying is an effective strategy.
> rolling a die until it shows a 6.
» driving around the block until a parking
space is available.
» pour into cup until full.

Fairness Environments
A trajectory o is an unfair execution of 7 if a state s appears infinitely often in ¢ but some

outcome state s’ € F'(w(a), s) only appears a finite number of times in o.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 193/235

Recap: Solution plans for FOND planning

e Classical sequential plans are not enough to solve FOND problems.
» We need more flexible behavior description (controlller) for agents

® We use policies mapping states into actions.
» Allow conditional and loops.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 194/235

Recap: Solution plans for FOND planning

Classical sequential plans are not enough to solve FOND problems.
» We need more flexible behavior description (controlller) for agents

We use policies mapping states into actions.
» Allow conditional and loops.

Weak plans may get the goal if we are lucky — not really adequate.

Strong plans are very demanding: they require that all possible executions of the plan
reach the goal. Often there is no strong plan! &

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 194/235

Recap: Solution plans for FOND planning

e (Classical sequential plans are not enough to solve FOND problems.
» We need more flexible behavior description (controlller) for agents

® We use policies mapping states into actions.
» Allow conditional and loops.

® Weak plans may get the goal if we are lucky — not really adequate.

e Strong plans are very demanding: they require that all possible executions of the plan
reach the goal. Often there is no strong plan! &

e Strong-cyclic plans are more flexible: they allow loops and conditionals, and they
guarantee that the goal will be reached if the environment is fair.

® Many environments are fair: retrying is an effective strategy. (s,

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 194/235

Recap: Solution plans for FOND planning

Classical sequential plans are not enough to solve FOND problems.
> We need more flexible behavior description (controlller) for agents

We use policies mapping states into actions.
» Allow conditional and loops.

Weak plans may get the goal if we are lucky — not really adequate.

Strong plans are very demanding: they require that all possible executions of the plan
reach the goal. Often there is no strong plan! &

Strong-cyclic plans are more flexible: they allow loops and conditionals, and they
guarantee that the goal will be reached if the environment is fair.

Many environments are fair: retrying is an effective strategy. (o

How can we compute these plans with loops? How to compute strong-cyclic plans policies?

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 194/235

Part 1. Non-deterministic Planning

Non-deterministic Planning
Solution Concepts for FOND Planning

Solving FOND Planning
m FOND Planning using Classical Planners
m FOND Planning via SAT
m Compact Policies via ASP/SAT

Conditional Fairness

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 195/235

Part 1. Non-deterministic Planning

Solving FOND Planning
m FOND Planning using Classical Planners
m FOND Planning via SAT
m Compact Policies via ASP/SAT

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 195/235

Non-determinism in PDDL

® Non-deterministic effects added to PDDL
for the 5th IPC in 2006.

® Action effect can have a one-of effect:
(oneof el e2 ... en)

® To support uncertainty track in IPC-5.

(:action unstack
:parameters (?bl ?b2 - block)

:precondition (and (not (= ?bl ?b2)) (emptyhand) (clear ?bl) (on

:effect (oneof

(and (holding ?bl) (clear ?b2) (not (emptyhand)) (not (clear ?bl)) (not (on ?bl ?b2)))

5th International Planning Competition: Non-deterministic Track
Call For Participation

systems for conformant, non-deterministic

and probabili ' planing under iftcrent crteria. This doc.
al planning

o vepecacatititn Wngisge ed) 1

Introduction
‘The Sth International Planning Competition (IPC-5) will be
colocated with the 16th International Conference on Auto-
mated Planning and Scheduling. ICAPS-06, to be held in
‘The English Lake District, UK. during June 6-10, 2006. The
IPC is a biannual event where planning systems are evalu-

Robert
Electrical & Cor

ue University
West Lafayette, IN 47907
givan@ecn.purdue.edu

non-deterministic confor-
mant planning, non-deter nal
planning with full observability), and pro lanning
(i conditional probabilistic planning With full obiervabil
ity).

As done in the classical track of IPC, we mnm that plan-
ners that offer different guara ality of their so-
lutions should be -

tracks that will cover the

2 gives a brief background on the different planning tasks
included in the competition as well as the form of the solu-
nsions and restrictions upon

ct. 4 focuses on the
winly how different

(and (clear ?7b2) (on-table ?bl) (not (on ?bl 7b2)))))

;; second effect: fail to grab;

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

?b1l ends on table

?bl ?b2))

196/235

https://ipc06.icaps-conference.org/probabilistic/docs/cf-ipc-prob.pdf

Non-determinism in PDDL

® Non-deterministic effects added to PDDL
for the 5th IPC in 2006.

® Action effect can have a one-of effect:
(oneof el e2 ... en)

e To support uncertainty track in IPC-5.

(:action pick-up-from-table
:parameters (?b - block)

5th International Planning Competition: Non-deterministic Track
Call For Participation

Blai Bonet
Departamento de Computacin
Universidad i

Abstract

“The Sth International Planning Competition will be colocated
with ICAPS-06. This IPC edition will contain a track on non-
deterministic and probabilistic planning as the continuation
of the probbilistic track at IPC-d. The non-deterministic
track will evaluate systems for conformant, non-determinstic:
and probabilistic planning under differen criteria. This doc-
ument describes the general goals of the track, the planning
tasks 0 be addressed., the representation language and the
evaluation methodology

Introduction

‘The 5th International Planning Competition (IPC-5) will be
colocated with the

IPC is a biannual event where planning systems are evalu-

Robert Givan
Electrical & Computer Engineering
irdue University
‘West Lafayette, IN 47907
givan@ecn.purdue.edu

tracks that will cover the areas of non-deterministic confor-
mant planning, non-deterministic planning (i.c. conditional
planning with full observability), and probabilistic planning
(i.c. conditional probabilistic planning with full observabil-

parisons are not meaningful. Hence
group will be further categorized by the guarantees they pro-
vide, as much as possible given the number of participants.
‘The rest of this document is organized as follows. Sect
2 give different planning tasks
included in the competition as well as the form of the solu-
tions. S nts the extensions and restrictions upon
the PPDDL language to be used. Sect. 4 focuses on the
evaluation aspects of the competition, mainly how different

:precondition (and (emptyhand) (clear ?b) (on-table 7b))

:effect (oneof

(and) ;; no effect - things stay the same!
(and (holding ?b) (not (emptyhand)) (not (on-table ?b)))))

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

196/235

https://ipc06.icaps-conference.org/probabilistic/docs/cf-ipc-prob.pdf

Al-Planning/fond-domains @ GH: Benchmark for FOND

(7] fond-domains (2w - | ([ewn @ - (Y@ [- | [se@® [-]
P 18ranch © 0Tags [Q Gotofile @][Add file - _ About
Flat collection of all FOND domains in
@hn ge pi i - 94c6801 /10 months ago) 31 Commits circulation.
| venchmarks. process tidyup-mdp #4 10monthsago | OO Readme
A Activiy
D .gitignore Initial commit of all the benchmarks. last year
[Custom properties
[README.md move FIP to non-aneof section #3 10 months ago fr Gstars
® 4watching
(I} README r Y dforks
Réport repository
FOND Benchmarks Releases

Mo releases published
Flat collection of all FOND domains in circulation, Notes are our (Christian Muise & Sebastian Sardina) best
guesses &5

Packages
These are planning domains that include the oneor effect to model non-deterministic actions (without
probabilities). The oneof construct was proposed as part of NPDDL (which starts from level 2 of PDDL 2.1)in
the following 2003 workshop paper:

o packages published

Contributors (2)

» Extending PDDL to nondeterminism, limited sensing and iterative conditional plans, Piergiorgio Bertoli,

Alessandro Cimatti, Ugo Dal Lago, Marco Pistare, International Warkshop on PDDL @ ICAPS 2003, pp e ssardina Sebastian Sardina
i [p—
Planning under non-deterministic oneof actions was then first used in the 2006 IPC-5 as an addition ot the
p (now and track):
Languages
« 5th Planning Competition: N Track Call For Participation, Blai Bonet and
Robert Givan, IPC-5 @ ICAPS 2006. ® PODL100.0%

Notable Changes

» added empty :paraseters block 1o some actions:
Tinish actionin faults, faults-new,and st_faults

https://github.com/AI-Planning/fond-domains

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 197/235

https://github.com/AI-Planning/fond-domains

Al-Planning/fond-utils @ GH: Utilities for FOND

Wity L Insights @ Settings

() fond-utils (usic) (s -) (owen @) (Y ra@ [) (¥ sw® [-)

Utities for parsing + processing FOND

(@ haz Merge pullrequest #23 fom Abslanningisas-vaidation osstet-2manchsigo OCommS | gomains.
B githubiworkfions Create python-publishymi smonthsago | [Readme
& MTlcense
 fondutis Merge pull request #22 from Al-lanning/saswalidation 2 months ago
® Codeof conduct
- tests Merge branch mai' into sasvalidation 2monthsago | . Activity
[giignore improve handiing o versioning #20 421 3monthsago | E Customproperties
o 4srs
[CODE.OF CONDUCTmd Minor wording update in CoC. 1imonthsago | & 2ustching
D ucense Minor docssdates. lastyear | ¥ 2forks
[ReADMEMA update readme: remove dummy import in example s months ago
D pyprojectiomi Update pyprojecttom! Smonthsago | Releases (7)
O requirements.xt remove dummy new line Tmonthsago | © w45
anbtays
+orel
01 README @ Codeofconduct &% MITlicense 7 = felaper
Packages

FOND Utilities Wopitages publibed

pubsh your frs package

Utites for parsing and the FOND
oneot effects). At this point the system can: Contributors)
« Normaize a . have asingle top- clause in the effect). @) rmcrsmse
e - : i
ol asetof possi the action. A R ——
solution in i ts te k i jinal FOND problem. Deployments (7)
her PDDL domain and does not deal P itself,
i ; © pypi2 months ago
d in other PRP, FONDSAT, or CFOND-ASP) that
are are based on p producea
g problem. For i
encodings, please refer planners or the P Languages
© Important —_—
o POoLs2ze e pythonaion
The syst arean y nesting of oneof , 5,and and . See o ssson

https://github.com/AI-Planning/fond-utils

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 198/235

https://github.com/AI-Planning/fond-utils

FOND Planning using Classical Planners

One of the most effective ways to solve FOND planning problems is to use classical
planners! Weird...?

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 199/235

https://github.com/AI-Planning/fond-utils

FOND Planning using Classical Planners

{74 One of the most effective ways to solve FOND planning problems is to use classical
planners! Weird...?

They all use a deterministic relaxation of the FOND problem:

All-outcome determinization

Deterministic relaxation Pp of FOND P obtained by substituing non-det actions a with
effects {e1,...,e,} by deterministic actions a',...,a", where a''s effect is e;, for i € [1,n].

® Ppis a deterministic classical planning problem.
® Under reasonable assumptions, Pp is polynomially larger than P.
® There are tools to do the determinization:

https://github.com/AI-Planning/fond-utils

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 199/235

https://github.com/AI-Planning/fond-utils

Week and Online Solutions for FOND Planning

¥# Weak (open loop) solution for P

From any classical plan p for Pp:

® If p generates trajectory sg,...,sy in Pp, set 7(s;) = a if p; € a.
® Run 7 and hope for the best! !

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 200/235

Week and Online Solutions for FOND Planning

¥# Weak (open loop) solution for P

From any classical plan p for Pp:

® If p generates trajectory sg,...,sy in Pp, set 7(s;) = a if p; € a.
® Run 7 and hope for the best!

¥#* Online (closed loop) solution method for P

Reach goal by interacting with FOND “system” that returns observation s’ € F(a, s):
From current state s, initially sg, compute plan p = p1,..., pn for Pp[s].

Execute prefix a1, ..., a; for p; € a; until state s; observed is goal or different than
state s, predicted in Pp.

If s; is goal, exit; else set s := s; and go back to 1

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 200/235

Week and Online Solutions for FOND Planning

¥# Weak (open loop) solution for P

From any classical plan p for Pp:

* If p generates trajectory sq,...,Sny in Pp, set w(s;) = a if p; € a.
® Run 7 and hope for the best!

¥#* Online (closed loop) solution method for P

Reach goal by interacting with FOND “system” that returns observation s’ € F(a, s):
From current state s, initially sg, compute plan p = p1,..., pn for Pp[s].

Execute prefix a1, ..., a; for p; € a; until state s; observed is goal or different than
state s, predicted in Pp.

If s; is goal, exit; else set s := s; and go back to 1

Properties: If no dead-end states reachable in P, under mild assumptions, goal state
eventually reached. Else, method is incomplete.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 200/235

PRP: Strong Cyclic Policies using Classical Planners

More powerful off-line method, can compute strong cyclic policies:

£+ PRP: Planning for Relevant Policies (Muise, Mclliraith, Beck ICAPS'12)

Run simulated on-line method not just from sy but from every possible sucessor s’ of a
(simulated) observed state s; i.e., s’ € F(a,s) for a executed in s.

If state s’ € F(a, s) is reached from which no classical plan for Pp(s); remove a from
A(s), and start all over again.

Keep policy to 7(s) = a where deterministic version a; is head of shortest classical
prefix found from s to goal.

Properties:
* Method is sound and complete: returns strong cyclic policy if one exists. /&
® More scalable than other methods as it uses classical planners.
e Can be made more efficient by generalizing plans using regression.
e Struggles if there are many “risky” nondeterminism leading to dead-ends.

w

. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 201/235

Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.

So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.
» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

So, we can set our FOND policy to m(s,—1) = an.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 202/235

Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.

So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.
» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

So, we can set our FOND policy to 7(s,_1) = ay,. Is that the best we can do? &

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 202/235

Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.

So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.
» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

So, we can set our FOND policy to 7(s,_1) = ay,. Is that the best we can do? &

What about any other state s’ such that p,q € s'?

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 202/235

Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.
So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.
» The last action of p has g € Add(a,,) — a,, achieves the goal.
The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

o)

So, we can set our FOND policy to m(s,—1) = a,. Is that the best we can do?

What about any other state s’ such that p,q € s’? Can we also set 7(s') = a,? =

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 202/235

Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.
So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.

» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

o)

So, we can set our FOND policy to m(s,—1) = a,. Is that the best we can do?

What about any other state s’ such that p,q € s’? Can we also set 7(s') = a,? =
YES! — {p, q} is the regression of goal w.r.t. action a,

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 202/235

Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.
So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.

» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(a,) = {p, q}.
» Clearly, p,q € sp,—1 —ay's precondition hold just before the goal.

3

So, we can set our FOND policy to m(s,—1) = a,. Is that the best we can do?

=

What about any other state s’ such that p,q € s'? Can we also set 7(s") = a,,?
YES! — {p, q} is the regression of goal w.r.t. action a,,

© Question

If Add(an—1) = {p} and Pre(a,,—1) = {w}, what states s’ can we set 7(s') = a,,—17?

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 202/235

PRP Rebooted: AAAI'24

PRP Rebooted: Advancing the State of the Art in
FOND Planning
e e

@ PRP Rebooted: Advancing State-of-the-Art in Fond Planning

@ imin

PRP Rebo&%d

Advancing th te of the Art nmn Planning

Abstract
Fully Observable Non-Deterministic (FOND) planning is a variant of classical symbolic planning in which actions are nondeterministic, with an

action’s outcome known only upen execution. It is a popular planning paradigm with applications ranging from robot planning to dialogue-agent

design and reactive synthesis. Over the last 20 years, a number of approaches to FOND planning have emerged. In this work, we establish a new

https://mulab.ai/project/pr2/

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 203/235

https://mulab.ai/project/pr2/

Shortcomings of Classical Planners for FOND
PRP scales wellas it uses classical planners + regression. However:
e Codebase is highly sophisticated; thousands of lines.

® Uses a lot of tricks: regression, dead-end detection, regression, loop closing,
strong-cyclic check, etc.

Struggle from “risky nondeterminism”, where previous search choices need to be thrown
and restarted.

» non-deterministic actions whose other effects will eventually lead to dead-ends.

® May output very large policies — no guarantees of “compactness”.

Unable to handle mixed fairness environments.
» some actions are fair, others are unfair.

w

. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 204/235

Shortcomings of Classical Planners for FOND
PRP scales wellas it uses classical planners + regression. However:
e Codebase is highly sophisticated; thousands of lines.

® Uses a lot of tricks: regression, dead-end detection, regression, loop closing,
strong-cyclic check, etc.

Struggle from “risky nondeterminism”, where previous search choices need to be thrown
and restarted.

» non-deterministic actions whose other effects will eventually lead to dead-ends.

® May output very large policies — no guarantees of “compactness”.

Unable to handle mixed fairness environments.
» some actions are fair, others are unfair.

© What can we do about these issues? Can we get a simpler, declarative solver for FOND?

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 204/235

wn

Recall Theory C'(P, n) for Classical Problem P = (F, A, I,G)

e Init: pg forpe I, ~qoforqe Fand g & I

® Goal: p, forpe G

® Actions: Fori=0,1,...,n— 1, and each action a € A
» a; D p; for p € Prec(a)
» a; D pi+1 for each p € Add(a)
» a; D —p;41 for each p € Del(a)

* Persistence: For i =0,...,n — 1, and each atom p € F, where O(p*) and O(p™)
stand for the actions that add and delete p resp.

» pi A Naco(p-)T0;i D Pit1

» i A Naco(pt) @i D TPit1

e Seriality: Foreach i =0,...,n—1,if a # d/, =(a; A a})

. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 205/235

Strong Cyclic Planning as SAT

¢ Key idea: label each state with action and distance to goal.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior,

q

g9 A qag rbs

9120 N 9¢120

, July 28 -August 1, ECI25 206,/235

Strong Cyclic Planning as SAT

v

> sa;: s; and w(s) = a

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior,

¢ Key idea: label each state with action and distance to goal.
* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢

q

g9 N qag Tbs

x4 N xdy

, July 28 -August 1, ECI25 206,/235

Strong Cyclic Planning as SAT
¢ Key idea: label each state with action and distance to goal.

v

* Variables of SAT encoding (i is not time index!)
> s;: min “distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a

® Formulas C(M); here M = S(P) and max = |S| — 1:

Smaz TOr initial state sy ; max dist I to goal of length < max
sg for s € Sg and —sq for s & Sq

q

g9 N qag Tbs

x4 N xdy

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 206,235

Strong Cyclic Planning as SAT
¢ Key idea: label each state with action and distance to goal.

v

* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and max = |S| — 1:
Smaz TOr initial state sy ; max dist I to goal of length < max

sg for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance

g9 N qag ¢ Tbs

9120 N 9¢120

x4 N xdy

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 206,235

Strong Cyclic Planning as SAT

» Key idea: label each state with action and distance to goal.

* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢

> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and max = |S| — 1:
Smaz TOr initial state sy ; max dist I to goal of length < max

sg for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance .
A sa; OV s’ : some successor gets closer to goal
o t s'€f(as) Zi—1 & & 99 A qag t

9120 N 9¢120

x4 N xdy

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 206,235

Strong Cyclic Planning as SAT

¢ Key idea: label each state with action and distance to goal.

* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and max = |S| — 1: s¢ A Sag
Smaz TOr initial state sy ; max dist I to goal of length < max a
sg for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance .
5a; D Vyef(a,s) Si_1 ; Some successor gets closer to goal
Si—1 D s; ; if distance < i —1, then <
sa;_1 D sa; ; if distance < i —1, then <3

g9 N qag Tbs

REoENE

x4 N xdy

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 206,235

Strong Cyclic Planning as SAT

¢ Key idea: label each state with action and distance to goal.
* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and maz = |S| — 1:
Smaz TOr initial state sy ; max dist I to goal of length < max
sg for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance
5a; D Vyef(a,s) Si_1 ; Some successor gets closer to goal
Si—1 D s; ; if distance < i —1, then <
sa;_1 D sa; ; if distance < i —1, then <3
SUmaz D Sy 1 if T(s) = a, all s" € f(a,s), must reach goal
SUmaz D T8, 40t If T(8) = a, then 7(s) #d’, a # d.

ENpENENEA

g9 N qag ¢ Tbs

9120 N 9¢120

x4 N xdy

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 206,235

Strong Cyclic Planning as SAT

¢ Key idea: label each state with action and distance to goal.
* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and max = |S| — 1:
Smaz TOr initial state sy ; max dist I to goal of length < max
so for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance
5a; D Vyef(a,s) Si_1 ; Some successor gets closer to goal
Si—1 D s; ; if distance < i —1, then <
sa;_1 D sa; ; if distance < i —1, then <3 4120 A 4€120
SUmaz D Saw 3 1T T(8) = a, all 8 € f(a,s), must reach goal e
SUmaz D T8, 40t If T(8) = a, then 7(s) #d’, a # d. @4 A wdy

Model M has a strong-cyclic policy = iff C(M) is satisfiable.

g9 N qag t Tbs

ENpENENEA

If o satisfies C(M), 7(s) = a for Samqy true in o is a strong-cyclic policy that solves M

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 206/235

Too large encoding: Towards Compact Polocies

Encodings are exhaustive, all states s represented! %

(Geffner & Geffner 2018) proposed an encoding in SAT computing compact policies.
» of course, not in worst case

Can also be adjusted to compute strong policies.

Can also handle dual FOND: fair and unfair actions!

(Yadav & Sardina 2023): alternative encoding in a Answer Set Programming (ASP):
» More compact — exploits ASP first-order language.

» More readable — uses a more declarative style.
» Integrates regression ideas from PRP.

> Exploits ASP technology.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 207/235

Compact Controllers via ASP (Yadav & Sardina 2023)

¢ Key idea: devise a finite state controller with n states - (Geffner & Geffner 2018)

Encoding in ASP for FOND problem P = (A, I, G):
® atom(P): for each predicate P € A.

® action(A): for each action A € A. In addition, to define an l
action’s precondition and effects we use the following terms: go(1,2) 0 f
» prec(A, P): atom P is in precondition of action A. lZN{
) .)) change(2 1 l
> effect(A, E): associates an action with its E-th effect (one e
per oneoff effect). l chdnge(2)

refue 2
» add(A, E, P): E-th effect of action A adds atom P. l
> del(A, E, P): E-th effect of action A deletes atom P. g(2,3) 3
® init(P): predicate P € [is true in the initial state. '
g

® goal(P): predicate P € (5 is in the goal condition.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 208/235

Define Controllers States and Transitions

Solver to decide:
policy(S, A): action A executed in controller state S.

next(S1, E, S2): S2 is the next controler state if the E-th effect of prescribed action in
S1 ocurrs.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 209/235

Define Controllers States and Transitions

Solver to decide:
policy(S, A): action A executed in controller state S.

next(S1, E, S2): S2 is the next controler state if the E-th effect of prescribed action in
S1 ocurrs.

1 state(0..k). ¥ states of the controller
> {policy (S, A): action(A)} = 1:- state(S), S != k.
3 {next(S1, E, S2): state(S82)} = 1 :- policy(S1l, A), effect(A, E).

Defines controller k + 1 states. State k is goal state.
Select one action per controller state (except goal state k).

Defines a transition for each action’s effect to a next controller state.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 209/235

Define Controllers States and Transitions

1 holds(S, P) :- policy(S, A), prec(A, P).

> holds(S1, P) :-

3 next(S1, E, S2), holds(S2, P), policy(S1, A), not add(A, E, P).
4 -holds(82, P) :- next(S1, E, S2), policy(S1, A), del(A, E, P).

5 -holds(0, P) :- atom(P), not init(P).

6 holds(k, P) :- goal(P).

Preconditions must hold where action is prescribed.

Regression: P must have been true in the previous controller state.
Progression: P must be false next if action deleted it.

Initial state negative atoms.

@ What must be true at goal controller state k

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 210/235

Define Solution Concept: Strong Cyclic

1 reachableG(S):- state(S), S = k.
> reachableG(S):- next(S, _, S1), reachableG(S1).
3 :— not reachableG(S), state(S).

Goal controller state is reachable from itself.

Transitive clousure: Any (previous) controller state connected to a controller state that
reaches the goal state, also reaches the controller goal state.

Constraint: No controller state does not reach the goal state.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 211/235

Full FOND-ASP Code

state(0..k). Y states of the controller
{policy(S, A): action(A)} = 1:- state(S), S != k.
{next(S1, E, S2): state(S2)} = 1 :- policy(S1, A), effect(A, E).

holds (S, P) :- policy(S, A), prec(A, P).
holds(S1, P) :-
next(S1, E, S2), holds(S2, P), policy(S1, A), not add(A, E, P).

-holds(S2, P) :- next(S1, E, S2), policy(S1, A), del(A, E, P).
-holds (0, P) :- atom(P), not init(P).
holds(k, P) :- goal(P).

reachableG(S):- state(S), S = k.
reachableG(S):- next(S, _, S1), reachableG(S1).
:- not reachableG(S), state(S).

If a model is returned, controller defined in predicates policy/2 and next/3.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 212/235

Experimental Results vs. PRP and FOND-SAT

cronp-asp1- §22 100% 49342 90.91%
73 =
0 E
CrOND-AsP2- 22 100%] = 100%) & g
2] =
FsoLU- WeAM———— g 90.91%) & a B
4 @ 6040, El =
FSMST- . 100%) 5 = 63.64% i é 3 2
PALAD- B2 = s0o%) B 3
PRP- S 51.67% —%e% - -
CFOND-ASP1- 23689 93.33% o
485.8 m 2
CFOND-ASP2- 100 > 2 s
79 9 3 2 2
FSGLU- (100%) g (2857%) g
1314. 2 £ 1092.7 g §
FSMST - . 66.67% 5 g , 2571% + 2 g
PALAD - e 21.43% 3 3
=
4 PRP- #2 100% e 100%) S
2
£
8 85.8 3.6 758.3
& CFOND-ASP1- o o e . 69.09%
CFOND-ASP2- &= (27.21%) @ g 225 (69.09%)
$3 g s 53 1 2 P
FSGLU- 27.27% g 5 46.67% 5 69.09% g
6 s g 7.6 5 2639 P
FSMST - ” 18.18% = g 46.67% g A 50.91% 3
PALAD - 8 8L82% E 2 46.67% < 85.45%
) = | o 0.
prP- 422 100% 3 100% 2 100%
CFOND-ASP1- wift3& 49.32% - 3 o
£64.9 &l 3
CFOND-ASP2- A A a2 o A H 3
4527 b 7 @ 3
FSGLU- 67.12% L3 % = = 5
- 8 g 3
FSMST - #IRF2 54.79% <41 2 = £ e i
2 = g s
PALAD - ES = 2 8
0 @ =]
pRP- 422 100%) ~ s o) L 100%
0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000
Time (sec)

10: Better in risky non-determinism domains — first five. PRP better in the rest.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 213/235

Recap SAT/ASP for FOND Planning

® Declarative elegant solver for FOND planning problems via SAT or ASP.
e Compact controllers: finite state controller with k + 1 states.
® Increase the size when no solution found, and repeat.

e Faster than classical planning based approaches in domains with meaningful
non-determinism (“risky”).

e Can incorporate domain control knowledge (e.g., “do not executre a after b").

e Still struggles with large domains with “easy” non-determinism.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 214/235

Part 1. Non-deterministic Planning

Non-deterministic Planning
Solution Concepts for FOND Planning

Solving FOND Planning
m FOND Planning using Classical Planners
m FOND Planning via SAT
m Compact Policies via ASP/SAT

Conditional Fairness

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 215/235

Part 1. Non-deterministic Planning

Conditional Fairness

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 215/235

Can the robot get the money?
Consider an robot in a corridor:

® Robot can move left or right (up to the walls). Unknown size of steps, but > 1

e A price is at some of the end of the corridor.

® Robot doesn’t know its cell, but can sense if there is a wall on left/right after moving.
© Can the robot get the money? How to model the setting?

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 216/235

Can the robot get the money?
Consider an robot in a corridor:

E [Tl [T

® Robot can move left or right (up to the walls). Unknown size of steps, but > 1

e A price is at some of the end of the corridor.

® Robot doesn’t know its cell, but can sense if there is a wall on left/right after moving.
© Can the robot get the money? How to model the setting?

(define (domain tile)
(:predicates (leftWall) (rightWall))
(:action right right 1eft
:parameters ()
:precondition (not rightWall) rich W rich
:effect (oneof () (rightWall))) Iwall right U rwall
(:action left
:parameters ()
:precondition (not leftWall)

ceffect (oneof () (leftWall))) Lef O right
(:action pick lwall et /-\ rwall
:parameters () U

:precondition (or leftWall rightWall) right T left

:effect (rich)))
S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 216/235

pick right, left pick

Can the robot get the money?

Consider an robot in a corridor:

sl [[[[I [T}-[IT]]Is

right jeft
© Would this controller work? rich W rich
Iwall" J/ right '€ rwall

=€

right, left pick

lwall .
— 1 2 @ pick

left pick left right

right left

~(O

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 217/235

Can the robot get the money?

Consider an robot in a corridor:

right jeft
© Would this controller work? YES! rich ‘/Wf_t\ rich
O wall J vignt % rwall
lwall .
@ wa 2 @ pick right, left pick
left pick left A right
Strong-cyclic policy: Retrying left works! right T left

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 217/235

Can the robot get the money?

Consider an robot in a corridor:

© What about this one?

right
right jeft

rwaly 3 rich W rich

Iwall Jl' right rwall

— 1 2 4 i
lwall @ pick

left pick

right, left

pick

left right

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 217/235

Can the robot get the money?

Consider an robot in a corridor:

1]

© What about this one? NO!

right
right jeft

rwalﬁ 3 rich W rich
2

Iwall J right rwall

—_— 1 / 4 i
Twall @ pick

left pick

right, left pick

left right

How come? It is also a strong-cyclic policy! =
States where rich true are always reachable..
left action done infinitely many times in initial state

right left

~On

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 217/235

Conditional Fairness (Rodriguez et al. 2021)

Standard fairness assumption is not enough:
> trying left is not sufficient!

Joumal of Ariificial Intelligence Research 74 (2022) 87-916 Submitted 12/2021: published 06/2022

o
G

» must not move Tlght while tryl ng... FOND Planning with Explicit Fairness Assumptions

Ivan D. Rodriguez IVANDANIELRA@GMAIL.COM
Blai Bonet BONETBLAI@GMAIL.COM

® We need conditional fairness: left is fair as long as B i Bl S
right is not executed. e
» Same for right: fair provided left is not executed. HetorCofiur, TR T

Universitat Pompeu Fabra, Barcelona, Spain
Institucié Catalana de Recerca i Estudis Avangats (ICREA), Barcelona, Spain
Linkiping University, Linkiiping, Sweden

Standard FOND planners cannot handle this: they -

We consider the problem of reaching a propositional goal condition in fully-observable non-

assume that all actions are fair. P

itly. The fairess assumptions are of the form A/ and say that state trajectories that
s of an action a from A in a state s and finite occurrence of actions fror
infinite occurrences of action a in s followed by each one of its possible outcomes. The

H ! + AS P it traectorie tha violate his condition are deemed as unfair and the soluti
(Rodriguez et al. 2021)'s FOND™ in can IS ek i I o i i e
: ol 23 QNP plansii. plioing wiods] iimchied receinlyfo
h a n d Ie . ises of FOND planning with faimess h\umphmh of this form which can also be
| g S _ 1 1 1 i 1 :OND* planner is implemented by reducing FOND? plmmung to answer set programs, and
tron g-cyc lic p olicies with conditional fairness. its performance s evaluated in comparison with FOND and QNP planners, and LTL synthesis tools.

Two other FOND* planners are introduced as well which are more scalable but are not complete.

SEBASTIAN.SARDINA @RMIT.EDU.AU

. must also

» Mixed fairness: some actions are fair, others not. (Best Paper Award |CAPS'21)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 218/235

https://www.jair.org/index.php/jair/article/view/13599

FOND™

Let's generalize FOND:

FOND™ Problem

A FOND™ problem P. = (P,C) is a FOND problem P extended with a set C of
(conditional) fairness assumptions of the form A;/B;, i = 1,...,n and where each A; is a
set of non-deterministic actions in P, and each B; is a set of actions in P disjoint from A;.

Meaning of A/B € C: If a state trajectory contains infinite occurrences of actions a € A in
a state s, and finite occurrences of actions from B, then s must be immediately followed by
each s’ € F(n(s), s) an infinite number of times.

= jf left is executed infinitely many times in s, but right is executed, say, 10 times, then
eventually we will see the left wall.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 219/235

FOND Solutions as FOND™ Solutions

FOND™ Problem

A FOND™ problem P. = (P,C) is a FOND problem P extended with a set C' of
(conditional) fairness assumptions of the form A;/B;, i = 1,...,n and where each A; is a
set of non-deterministic actions in P, and each B; is a set of actions in P disjoint from A;.

Strong and strong cyclic planning all have solutions defined by the implicit fairness
assumptions particular to each one of them.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 220/235

FOND Solutions as FOND™ Solutions

FOND™ Problem

A FOND™ problem P. = (P,C) is a FOND problem P extended with a set C' of
(conditional) fairness assumptions of the form A;/B;, i = 1,...,n and where each A; is a
set of non-deterministic actions in P, and each B; is a set of actions in P disjoint from A;.

Strong and strong cyclic planning all have solutions defined by the implicit fairness
assumptions particular to each one of them.

Theorem
The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P.=(P,{A/0}), where A is the set of all the non-deterministic actions in P.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 220/235

FOND Solutions as FOND™ Solutions

FOND™ Problem

A FOND™ problem P. = (P,C) is a FOND problem P extended with a set C' of
(conditional) fairness assumptions of the form A;/B;, i = 1,...,n and where each A; is a
set of non-deterministic actions in P, and each B; is a set of actions in P disjoint from A;.

Strong and strong cyclic planning all have solutions defined by the implicit fairness
assumptions particular to each one of them.

Theorem

The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P.=(P,{A/0}), where A is the set of all the non-deterministic actions in P.

Theorem

The strong solutions of a FOND problem P are the solutions of the FOND™ problem
P. = (P,().

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 220/235

FOND™-ASP: An ASP-based Planner
1 % policy, edges, and connectedness
> { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S). TTAL(S)
3 successor(S,T) :- pi(S,A), TRANSITION(S,A,T). GOAL(S)
4 ACTION(A)
5 connected(S,T) :- successor(S,T). Eg?fﬁ?"(s’A’T)
6 connected(S,T) :- connected(S,X), successor(X,T), S != X. BSET(B,I)
7
8 blocked(S,T) :- STATE(S), STATE(T), not connected(S,T).
9 blocked(S,T) :- connected(S,T), terminate(S).
0 blocked(S,T) :- connected(S,T), terminate(T).
i1 blocked(S,T) :- connected(S,T),
12 blocked (X,T) successor (S,X), connected(X,T).
L3
na fair(S) :- pi(S,A), ASET(I,A), blocked(X,S) pi(X,B), BSET(I,B), not blocked(S,X).
[L5
16 % terminating states
17 terminate(S) :- GOAL(S).
s terminate(S) :- fair(S), successor(S,T), terminate(T).
9 terminate(S) :- not fair(S), successor(S,_), terminate(T) successor(S,T)
RO
p1 % reachable states must terminate
p2 :- reachable(S), not terminate(S).
p3 reachable(S) :- INITIAL(S).
p4 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).

S. Sardifia, Al Classical and Non-deterministic Planning: Model- basedgsoéfomro]u Blyawolrp July 28 -August 1, ECI25

221/235

FOND™-ASP: Graphical Intuition...

figure of a transition system, with two states looping, the first selects action A and the second
B. draw successors of each..

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 222/235

FOND™-ASP: Solution Policy

1 7% policy, edges, and connectedness
> { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S).
3 successor (S,T) :- pi(S,A), TRANSITION(S,A,T).

5 % reachable states must terminate

6 :— reachable(S), not terminate(S).
7 reachable(S) :- INITIAL(S).
g8 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).

2 Select an action per domain state.

3 Edges are transitions of the action selected.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

223/235

FOND™-ASP: Solution Policy

1 7% policy, edges, and connectedness
> { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S).
3 successor (S,T) :- pi(S,A), TRANSITION(S,A,T).

5 % reachable states must terminate

6 :— reachable(S), not terminate(S).
7 reachable(S) :- INITIAL(S).
g8 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).

2 Select an action per domain state.

3 Edges are transitions of the action selected.

6 Constraint: every reachable state via the policy needs to eventually terminate.

7-8 Define reachable states via the policy.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

223/235

FONDT™-ASP: State Termination

Defines when a state will eventually lead to termination and not get “sucked” in a loop..

1 % terminating states

> terminate(S) :- GOAL(S).

3 terminate(S) :- fair(S), successor(S,T), terminate(T).
4+ terminate(S) :- not fair(S), successor(S,_),

5 terminate(T) : successor(S,T).

2 If the state is a goal state.

3 If state will behave fairly (wrt effects of prescribed action) and one successor state will
terminate.

4 |If state may not behave fairly, and all successors will terminate.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 224/235

FOND™-ASP: Fairness

1 connected(S,T)
> connected(S,T)

:- successor(S,T).
:— connected(S,X), successor(X,T), S != X.

4 7% terminating states

5 terminate(S)
6 terminate(S)
7 terminate(S)

GOAL(S) .
fair(S), successor(S,T), terminate(T).
not fair(S), successor(S,_),

8 terminate(T) : successor(S,T).

9

o fair(S) :- pi(S,A), ASET(I,A),

11 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

1-2 States connected by the policy.

4-7 Every path from s to T will terminate somewhere.

10 Fair if any loop that includes actions in a fairness pair A/B (e.g., left and right), will

terminate somewhere else.
S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

225/235

FOND™-ASP: Strong Cyclic

The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P, = (P,{A/0}), where A is the set of all the non-deterministic actions in P.

1 % terminating states

> terminate(S) :- GOAL(S).

3 terminate(S) :- fair(S), successor(S,T), terminate(T).
4+ terminate(S) :- not fair(S), successor(S,_),

5 terminate (T) : successor(S,T).

6
; fair(S) :- pi(S,A), ASET(I,A), always false
8 blocked(X,S) : pi(X,B), BSET(I,B)% not blocked(S,X).

Line 3 always applies!

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 226/235

FOND™-ASP: Strong Cyclic

The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P, = (P,{A/0}), where A is the set of all the non-deterministic actions in P.

1 % terminating states

> terminate(S) :- GOAL(S).
3 terminate(S) :- fair(S), successor(S,T), terminate(T).
4+ terminate(S) :- not fair(S), successor(S,_),
5 +arminate (T) : successor(S,T).
(always true

6
+ tair(s)%i- pi(s,4), ASET(I,A), always false
° blocked(X,S) : pi(X,B), BSET(I,B)% not blocked(S,X).

Line 3 always applies!

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 226/235

FOND™-ASP: Strong Cyclic

The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P, = (P,{A/0}), where A is the set of all the non-deterministic actions in P.

1 % terminating states

[always applies J

> terminate(S) :- GOAL(S).

3 terminate(S) :- fair(S), successor(S,T), terminate(T)./Q/
4+ terminate(S) :- not fair(S), successor(S,_),

5 +arminate (T) : successor(S,T).

. (always true

+ tair(s)%i- pi(s,4), ASET(I,A), always false
° blocked(X,S) : pi(X,B), BSET(I,B)% not blocked(S,X).

Line 3 always applies!

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 226/235

FOND™-ASP: Strong

The strong solutions of a FOND problem P are the solutionsof the FOND™ problem
P. = (P,).

1 % terminating states

> terminate(S) :- GOAL(S).

3 terminate(S) :- fair(S), successor(S,T), terminate(T).

4+ terminate(S) :- not fair(S), successor(S,_),

5 terminate (T) : successor(S,T).

6

7 fair(S) :- pi(S,A), ASET(I,A)

8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 4 always applies!

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 227/235

FOND™-ASP: Strong

The strong solutions of a FOND problem P are the solutionsof the FOND™ problem
P, = (P,0).

1 % terminating states

> terminate(S) :- GOAL(S).

3 terminate(S) :- fair(S), successor(S,T), terminate(T).

4+ terminate(S) :- not fair(S), successor(S,_),

5 arminate (T) : successor(S,T).

:

7 fair(sS)7:- pi(S,A), ASET(I,A)

8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 4 always applies!

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 227/235

FOND™-ASP: Strong

The strong solutions of a FOND problem P are the solutionsof the FOND™ problem
P, = (P,0).

1 % terminating states

> terminate(S) :- GOAL(S). -

3 terminate(S) :- fair(S), successor(S,T)ﬁi always applies J

4 terminate(S) :- not fair(S), successor(S,_),fyr

5 arminate (T) : successor(S,T).

:

7 fair(sS)7:- pi(S,A), ASET(I,A)

8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 4 always applies!

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 227/235

Discussion

® We tested FOND"-ASP experimentally:

» Only planner that can solve FOND+ problems!

» Performs better than FOND-SAT and LTL
synthesis tool STRIX.

» PRP scales up better for FOND tasks.

» Limitation: state space grounding.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior,

transit3

back parking2 »

on_ship at_harbor

. =
s . gate2

transitl

transit2

, July 28 -August 1, ECI25 228/235

Discussion

® We tested FOND™-ASP experimentally:

» Only planner that can solve FOND+ problems!

» Performs better than FOND-SAT and LTL
synthesis tool STRIX.

» PRP scales up better for FOND tasks. e

» Limitation: state space grounding.

back parking2 »

® FOND = simple extension of classical planning t.
gatel
» Just add oneor in effects!
e But brings radical changes: onshlp at harbor O—
s . gate2

» Complexity up to EXPTIME-complete.
» Builds plans with loops!

» Can model scenarios with "re-tries” transit1
» Can deal with adversarial domains. N

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 228/235

Discussion

We tested FOND™-ASP experimentally:
» Only planner that can solve FOND+ problems!
» Performs better than FOND-SAT and LTL
synthesis tool STRIX.
» PRP scales up better for FOND tasks. e
» Limitation: state space grounding.

back parking2 »

FOND = simple extension of classical planning
» Just add oneof in effects!

at_harbor

e But brings radical changes: °“’ O &)
» Complexity up to EXPTIME-complete. i
» Builds plans with loops!
» Can model scenarios with "re-tries” transitt
» Can deal with adversarial domains. A

FOND™ and domains with “qualitative” numbers?
» e.g., distance to the wall

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 228/235

Discussi

We tested FOND™-ASP experimentally:

on

» Only planner that can solve FOND+ problems!
» Performs better than FOND-SAT and LTL

synthesis tool STRIX.

> PRP scales up better for FOND tasks.
» Limitation: state space grounding.

» Just add oneor in effects!

e But brings radical changes:

» Complexity up to EXPTIME-complete.

Builds plans with loops!

>
» Can model scenarios with "re-tries”
» Can deal with adversarial domains.

FOND = simple extension of classical planning

FOND™ and domains with “qualitative” .numbers?

onship
s

at_harbor

» e.g., distance to the wall

S. Sardifa, Al Classical and Non-deterministic Planning?

Qualitative Numeric

Planning (

QNP)

transitl

transit2

transit3

228,235

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 229/235

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 230/235

Que vimos? «%

Busqueda as a general problem solving method:
> Representacién: state model (a graph!).
» Uninformed methods: BrFS, DFS, IDS, UCS.
» Informed methods: A* and heuristics.
» Heuristics as problem relaxation.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 231/235

Que vimos? «%

Busqueda as a general problem solving method:

> Representacién: state model (a graph!).

» Uninformed methods: BrFS, DFS, IDS, UCS.
» Informed methods: A* and heuristics.

» Heuristics as problem relaxation.

Classical Planning = Al Search + Al KR

» Model-based approach to autonomous behavior.
Languages: STRIP and PDDL.

Heuristic extraction by relaxing the representation.
Delete-relaxation heuristic: h™

Approximations: h,q4, Amax, Rrr.

Planning graphs.

vVvvyyvyy

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 231/235

Que vimos? «%

Busqueda as a general problem solving method:

> Representacién: state model (a graph!).

» Uninformed methods: BrFS, DFS, IDS, UCS.
» Informed methods: A* and heuristics.

» Heuristics as problem relaxation.

Classical Planning = Al Search + Al KR

Model-based approach to autonomous behavior.
Languages: STRIP and PDDL.

Heuristic extraction by relaxing the representation.
Delete-relaxation heuristic: h™

Approximations: h,q4, Amax, Rrr.

Planning graphs.

ND Planning: Non-determinism
Non-deterministic state models (no probabilities!)
PDDL with one-of effects + Policies.

Solution concepts: weak, strong, strong-cyclic.
Fairness assumption on environment.
Computing policies.

B F

VYYYYO VvVyVvVYVYy

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 231/235

Al Planning and Control Synthesis in SE ¥

® What if we want to plan for more complex goals?
Elevator controller: every passenger floor
requests needs to be eventually fulfilled, but never
Al AUTOMATED PLANNING SOFTWARE ENGINEERING
have more than 10 passengers on board. , CohTeO LR THES's

¢ Event-driven systems: some events cannot be
planned/controlled (e.g., user aborts transaction)

¢ |nfinite behavior: continuous operation, never
stop.
What are the goals if we never finish? Infinite
games vs. finite games

¢ Compositional planning/synthesis: software
components described separately
Plan on different PDDLs and the combine.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 232/235

LaFHIS - Laboratory on Fundamentals and Tools for Software Engineering

I_AF H | S ‘ The Tools and Foundations
for Software Engineering Lab

What we do The Lab News Contact

R&D Augmentation

We help organisatians snlve difficult nrohlams by annlving
state of the art automated software engineering methods;
technigues and to00IS. We support our partners in
bootstrapping their R&D activities, designing strategies;
identifying key teghnologies and collaboratively developing
solutions.

We incorporate, combing ah@, adapt state of*the art
technlques from program analysis, program, repair, program
understanding domain _snacific hrnmrqmmmg languages,
ano model-based software engineering as needed to
address the specific contexts and pottlenecks that our
partners have.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 233/235

https://lafhis.dc.uba.ar

‘.== LA F H | S ‘ The Tools and Foundations
T for Software Engineering Lab
What we do The Lab News Contact

x

R&D Augmentation

We he|p orgamqnfmm anlve difficnlt nmhlamq h\t ﬁmnl\nnm
state of the art automated software englneermg fethods=
technigues and t1o0IS. We support our partners in
bootstrapping their R&D activities, designing strategiesy 4
Identifying key technologwes and collaboratwely developing

solutions. »
7 Q\

We imcorporate, combing ahe adapt stafe ofthe art

technlgques from program analysis, program repair, program =
2 Understanding domain_specific nmnrnmmmg languages, ‘Sa

anc model-based software epgineering as needed to

addaress the Specific contexts and pottlenecks that our

partners have.

&

Contact sebastian.sardina@rmit.edu.au - https://ssardina.github.io/

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 235/235

sebastian.sardina@rmit.edu.au
https://ssardina.github.io/

	Non-deterministic Planning
	Non-deterministic Planning
	Solution Concepts for FOND Planning
	Solving FOND Planning
	FOND Planning using Classical Planners
	FOND Planning via SAT
	Compact Policies via ASP/SAT

	Conditional Fairness

