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Planning Models: Vanilla Model for Classical Al Planning

e finite and discrete state space S
® 3 known initial state s € S
® aset Sg C S of goal states
* actions A(s) C A applicable in each s € S
* a deterministic transition function s’ = f(a, s) for a € A(s)
® positive action costs c(a, s)
A solution/plan is seq. of applicable actions © = ay, . .., a, that maps sy into Sg.

Plan is optimal if it minimizes the sum of action costs.

i) Different models obtained by relaxing assumptions in bold.
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Planning with non-deterministic actions

What if an action may yield different effect outcomes?

¢ Slipery floor: you may slip and fall (and maybe hurt yourself).

e Slipery blocksworld:
if you stack or unstack a block, it may fall down to the table.

® Dice rolling: if you roll a die, it may yield different outcomes:
1,2,3,4,5 or 6.

® Robot operation: when using the gripper, it may succeed or
fail to pick an object (and may need to retry).
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Planning with non-deterministic actions

What if an action may yield different effect outcomes?

Slipery floor: you may slip and fall (and maybe hurt yourself).

Slipery blocksworld:
if you stack or unstack a block, it may fall down to the table.

Dice rolling: if you roll a die, it may yield different outcomes:
1,2,3,4,5 or 6.

Robot operation: when using the gripper, it may succeed or
fail to pick an object (and may need to retry).

Finding parking: when visiting a block you may or may not find parking space (if not,
keep going around the block).

Walking on beam: if you do a step on a beam, you may advance or fall down.

Walking on corridor: if you do a step you may or may not be at the end of the corridor.
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Example: Harbor Management FOND Problem

Very simple harbor management domain:
transit3
Unload a single item from a ship.
Park the item in a storage facility.

Deliver it to gates (to be loaded into
$
tracks). ’. -

parking2

back

on_ship at_harbor

S , gl . gate2

transitl

Storage and gates may be unavailable, o
but we can always wait and move ) ) ) .
. (Example 11.1 in Acting, Planning, and Learning
containers around.
Ghallab, Nau, Traverso 2025)
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Planning with Markov Decision Processes

Goal MDPs are fully observable, probabilistic state models:

a state space S

initial state sp € S

aset G C S of goal states

actions A(s) C A applicable in each state s € S

transition probabilities P, (s’ | s) for s € S and a € A(s) <
action costs c(a,s) >0

REoBENE

® Solutions are functions (called “policies”) mapping states into actions; 7 : S — A
» 7(s) states what action to do in state s

e Optimal solutions minimize expected cost to goal.

* Reward-based MDPs involve rewards instead of costs, and discount factor -y € [0,1)
in place of goals. They underlie theory of RL. (&
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FOND Planning: Fully-observable Non-Deterministic Planning

A FOND state model is like the “logical” counterpart of Goal MDPs:

a state space S

initial state sp € S

aset G C S of goal states

actions A(s) C A applicable in each state s € §

non-det state transition function F': successors s’ € F(a,s), s€ S, a € A(s) O
action costs c(a, s) =1

REoBENE

* Main change from Classical Planning: F(a, s) maps to set of possible states (not to
one unique state).
» Nature decides what next state is reached after action a is applied in state s —
non-determinism.

» ... but agent will observe the state reached after a is applied.
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FOND Planning: Fully-observable Non-Deterministic Planning

A FOND state model is like the “logical” counterpart of Goal MDPs:

a state space S

initial state sp € S

aset G C S of goal states

actions A(s) C A applicable in each state s € §

non-det state transition function F': successors s’ € F(a,s), s€ S, a € A(s) O
action costs c(a, s) =1

REoBENE

* Main change from Classical Planning: F(a, s) maps to set of possible states (not to
one unique state).
» Nature decides what next state is reached after action a is applied in state s —
non-determinism.

» ... but agent will observe the state reached after a is applied.

* Main change from MDPs: possible transitions s € F'(a, s) not weighted by probabilities.
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Fully Observable Non-Deterministic Planning (FOND)

Initial State
L Plannin
Non-deterministic &
System Plan?
Operators
(Solver)
Goal State
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Fully Observable Non-Deterministic Planning (FOND)

achieves goal

Initial State from initial state
- using operators
N Planning
Non-deterministic
System Plan?
Operators
(Solver)
Goal State
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Fully Observable Non-Deterministic Planning (FOND)

set of possible | |nitial State
effects

Operators

Goal State

Planning

System
(Solver)

achieves goal
from initial state

using operators

Plan?
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Example: Does it have a solution?

® |s it possible to always deliver the transit3
containers to the gates?

move

® If so, what is the sequence of
actions?

arking2
LU 4 deliver,

on_ship

S gl . gate2

transitl

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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move

® If so, what is the sequence of
actions?

on_ship
S

transitl

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Does it have a solution?

® |s it possible to always deliver the transit3
containers to the gates? ?

® If so, what is the sequence of
actions? X

Need to know what to do in each state!

on_ship

S gl . gate2

transitl

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Does it have a solution?

transit3

® |s it possible to always deliver the
containers to the gates? ?

® If so, what is the sequence of

actions? X

Need to know what to do in each state!

on_ship
S

Policy

A policy 7 is a partial function from
states s into actions a; thatis, 7 : S — A.

transitl
(when undefined, agent stops acting) transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Does it have a solution?

® |s it possible to always deliver the
containers to the gates? ?

® If so, what is the sequence of

actions? X

Need to know what to do in each state!

Policy

A policy 7 is a partial function from

states s into actions a; thatis, 7 : S — A.

(when undefined, agent stops acting)

=) |s there a “good” policy 77?
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transit3

back  parking2

deliver,

on_ship

S gl . gate2

transitl

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

179/235


https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A

Example: Does 7 solve the task?

Policy

S m1($)

on_ship | unload
at_harbor | park

parkingl | deliver

parking2 back

transitl move
transit2 move
transit3 move

transit3

on_ship

S gl . gate2

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 180/235


https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
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transitl
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Policy X

Example: Does 7 solve the task?

S m1($)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transitl move
transit2 move
transit3 move

transit3

on_ship
S

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What about 757

transit3

POIicy Uy move
S 2 (8) . gatel

on_ship | unload

at_harbor | park
parkingl | deliver B
parking2 | deliver s gate2
transitl move
transit2 move
transit3 move
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transitl

transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What about 757

transit3

Policy 7o

S ma($)

on_ship | unload
at_harbor | park

parkingl | deliver

on_ship

parking2 | deliver s ()] gate2
transitl move

transit2 move

transit3 move

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Which one is better?

Policy 9
S 7(s)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transitl move
transit2 move
transit3 move
Policy 74
S 7(s)
on_ship | unload
at_harbor | park

on_ship
S

transit3

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Policy 9

Example: Which one is better?

S 7(s)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transitl move
transit2 move
transit3 move

Policy 74 X

S 7(s)
on_ship | unload
at_harbor | park

on_ship
S

transit3

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example:

Policy

S ma($)
on_ship | unload

at_harbor | park
parkingl | deliver
parking2 | deliver

transit2 move

transit3 move

What if transitl is a dead-end?

transit3

parking2

back

on_ship

N
s . gate2

at_harbor

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What if transitl is a dead-end?

transit3
Policy X
back  parking2 moye
S ma(s)
on_ship | unload () gate1

at_harbor | park
parkingl | deliver

) ) on_ship at_harbor =\
park|n.g2 deliver S . gate2
transit2 move
transit3 move

transitl

Do)

But could 7 succeed (sometimes)? =

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What if parking2 is not connected to gates?

Policy m,

S m1(8)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transit2 move
transit3 move
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transit3

back  parking2

on_ship
S

at_harbor

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What if parking2 is not connected to gates?

Policy m, X

S m1(8)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transit2 move
transit3 move

Storage parkingl may never be available!
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transit3

back  parking2

on_ship
S

at_harbor

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
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Example: What if parking2 is not connected to gates?

transit3
Policy m, X

S m1(8)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transit2 | move A

S )
0 . gate2
transit3 move

back  parking2

at_harbor

Storage parkingl may never be available!

transitl

But, what if we know parkingl would
eventually becomes available? =

transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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So, some lessons...

e (lassical plans as sequences of actions are not
enough to solve FOND problems.

® \We need to use a policy that maps states into transits
actions.

» More like “programs” with conditionals and loops!

parking2

back

® Some (bad) policies are better than others.

unload

at_harbor

® Some policies may achieve the goal, but not 2
always. ’

® Some policies will achieve the goal if environment .
is not too adversarial — not unfair. tranit

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 185/235



So, some lessons...

e (lassical plans as sequences of actions are not
enough to solve FOND problems.

® \We need to use a policy that maps states into transits
actions.

» More like “programs” with conditionals and loops!

parking2

back

® Some (bad) policies are better than others.

unload

at_harbor

® Some policies may achieve the goal, but not 2
always. ’

® Some policies will achieve the goal if environment B
is not too adversarial — not unfair. tranit

This seems way more complex planning! &
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Planning is hard!
R

ELEMENTARY Non-deterministic planning )

2EXPTIME
EXPSPACE

Classical
Planning

Classical

o NP-C Planning
(poly-plans)
RN
N %,
\ @
NN S
NN
A
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Kinds of Solution Policies

il acyclic ,
<afe policies ~a~
. policies li
solution | ;}(Z);:i(]:(i:es Qc_. Goal States

policies

unsafe <i
policies ¢

Acting, Planning, and Learning Ghallab, Nau, Traverso 2025
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Part 1. Non-deterministic Planning

Non-deterministic Planning
Solution Concepts for FOND Planning

Solving FOND Planning
m FOND Planning using Classical Planners
m FOND Planning via SAT
m Compact Policies via ASP/SAT

Conditional Fairness
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Part 1. Non-deterministic Planning

Solution Concepts for FOND Planning
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FOND Planning: Solution Concepts

Running policy 7 from state s yields trajectories runs:

* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].
* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)
FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
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FOND Planning: Solution Concepts
Running policy 7 from state s yields trajectories runs:

* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].
* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)
FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.
> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
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FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.

> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)
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FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.

> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)

7 is strong cyclic solution if for each state s reachable from sy with a m-trajectory,
there is a m-trajectory from s to goal.
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* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)

FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.

> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)

7 is strong cyclic solution if for each state s reachable from sy with a m-trajectory,
there is a m-trajectory from s to goal.

» Always a possibility to reach the goal.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 189/235



FOND Planning: Solution Concepts
Running policy 7 from state s yields trajectories runs:
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* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)

FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.

> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)

7 is strong cyclic solution if for each state s reachable from sy with a m-trajectory,
there is a m-trajectory from s to goal.

» Always a possibility to reach the goal.
» Goal will be achieved if environment is not “adversarial”
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FOND Planning: Solution Concepts

Running policy 7 from state s yields trajectories runs:
* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].

* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)

FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.
> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)

7 is strong cyclic solution if for each state s reachable from sy with a m-trajectory,
there is a m-trajectory from s to goal.

» Always a possibility to reach the goal.
» Goal will be achieved if environment is not “adversarial”
> Plans may have conditionals & loops!
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Weak Plans

transit3

S ™ (S) back  parking2 A s
on_ship | unload <
at_harbor | park O\ gatet

parkingl | deliver
parking?2 back

on_ship at_harbor
transit2 move s gt O/ eate
transit3 move
transitl
v/ Policy 7 is a weak plan as there is a trajectory that reaches the goal. w2

» {on_ship}, {at_harbor}, {parkingl}, {gatel}

® But 7 is not a strong plan.
» {on_ship}, {at_harbor}, {parking2}, {at_harbor}, {parking2}, {at_harbor}, ...
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What about strong cyclic?

S 1($)

on_ship | unload
at__harbor | park
parkingl | deliver
parking2 back

transitl move
transit2 move
transit3 move

transit3

parking2 1

back
del .
eliver

unload

on_ship at_harbor

s i () eate2

transitl

transit2

Policy 7 is strong cyclic solution if for each state s reachable from sy with a 7-trajectory,

there is a m-trajectory from s to goal.
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What about strong cyclic?

transit3

S 1($)

on_ship | unload
at__harbor | park

parkingl | deliver
parking2 back

parking2 1

back
del .
eliver

unload

. on_ship at_harbor

trans!tl move : ; ®/::-
transit?2 move

transit3 move

transitl

transit2

Policy 7 is strong cyclic solution if for each state s reachable from sy with a 7-trajectory,
there is a m-trajectory from s to goal.

* Yes!, policy never “loses” the possibility to get the goal /&
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What about strong cyclic?

transit3

S 1($)

on_ship | unload
at__harbor | park

parkingl | deliver
parking2 back

parking2 1

back
del .
eliver

unload

. on_ship at_harbor

trans!tl move : ; ®/::-
transit?2 move

transit3 move

transitl

transit2

Policy 7 is strong cyclic solution if for each state s reachable from sy with a 7-trajectory,
there is a m-trajectory from s to goal.

* Yes!, policy never “loses” the possibility to get the goal /&
® But, it may loop “forever” in some states.
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What about strong cyclic?

transit3

S 1($)

on_ship | unload
at__harbor | park

parkingl | deliver
parking2 back

parking2 deliver
— )

back

unload

. on_ship at_harbor

trans!tl move : ; ®/::-
transit?2 move

transit3 move

transitl

transit2

Policy 7 is strong cyclic solution if for each state s reachable from sy with a 7-trajectory,
there is a m-trajectory from s to goal.

* Yes!, policy never “loses” the possibility to get the goal /&
® But, it may loop “forever” in some states.
® We can make 7 strong by changing it to 7 (parking2) = deliver.
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Strong cyclic policies: when do they work?

© Is there a strong plan?

transit3

move
parking2

back

unload

on_ship at_harbor

=
s i . gate2

transitl

transit2
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Strong cyclic policies: when do they work?

© Is there a strong plan? No!

transit3

move
parking2

back

unload

on_ship at_harbor

=
s i . gate2

transitl

transit2

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 192/235



Strong cyclic policies: when do they work?

© Is there a strong plan? No!

Best we can do is: transit3
S 7r1(s)
On_ship unload back  parking2 sk
at_harbor | park 3
. gatel

parkingl | deliver
parking2 back

transitl move onehip
transit2 move 8 i O/ eate2
transit3 move

unload

at_harbor

transitl

© When will this policy reach the goal?

transit2
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Strong cyclic policies:

© Is there a strong plan? No!
Best we can do is:

S 7T1(8)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transitl move
transit2 move
transit3 move

© When will this policy reach the goal?
When executed in “fair” environments!

Fairness Environments

when do they work?

transit3

parking2

back

unload

on_ship at_harbor

—
S gl . gate2

transitl

transit2

A trajectory o is an unfair execution of 7 if a state s appears infinitely often in ¢ but some
outcome state s’ € F(w(a), s) only appears a finite number of times in o.
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Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

Fairness Environments
A trajectory o is an unfair execution of 7 if a state s appears infinitely often in ¢ but some
outcome state s’ € F'(w(a), s) only appears a finite number of times in o.
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Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

© What type of environments?

Fairness Environments
A trajectory o is an unfair execution of 7 if a state s appears infinitely often in ¢ but some
outcome state s’ € F'(w(a), s) only appears a finite number of times in o.
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Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

RY UNTIL SUCCESS

© What type of environments?
® Where each effect listed has indeed
non-zero probability.

¢ Re-trying is an effective strategy.
> rolling a die until it shows a 6.
» driving around the block until a parking
space is available.
» pour into cup until full.

Fairness Environments
A trajectory o is an unfair execution of 7 if a state s appears infinitely often in ¢ but some

outcome state s’ € F'(w(a), s) only appears a finite number of times in o.
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Recap: Solution plans for FOND planning

e Classical sequential plans are not enough to solve FOND problems.
» We need more flexible behavior description (controlller) for agents

® We use policies mapping states into actions.
» Allow conditional and loops.
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Recap: Solution plans for FOND planning

Classical sequential plans are not enough to solve FOND problems.
» We need more flexible behavior description (controlller) for agents

We use policies mapping states into actions.
» Allow conditional and loops.

Weak plans may get the goal if we are lucky — not really adequate.

Strong plans are very demanding: they require that all possible executions of the plan
reach the goal. Often there is no strong plan! &
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Recap: Solution plans for FOND planning

e (Classical sequential plans are not enough to solve FOND problems.
» We need more flexible behavior description (controlller) for agents

® We use policies mapping states into actions.
» Allow conditional and loops.

® Weak plans may get the goal if we are lucky — not really adequate.

e Strong plans are very demanding: they require that all possible executions of the plan
reach the goal. Often there is no strong plan! &

e Strong-cyclic plans are more flexible: they allow loops and conditionals, and they
guarantee that the goal will be reached if the environment is fair.

® Many environments are fair: retrying is an effective strategy. (s,
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Recap: Solution plans for FOND planning

Classical sequential plans are not enough to solve FOND problems.
> We need more flexible behavior description (controlller) for agents

We use policies mapping states into actions.
» Allow conditional and loops.

Weak plans may get the goal if we are lucky — not really adequate.

Strong plans are very demanding: they require that all possible executions of the plan
reach the goal. Often there is no strong plan! &

Strong-cyclic plans are more flexible: they allow loops and conditionals, and they
guarantee that the goal will be reached if the environment is fair.

Many environments are fair: retrying is an effective strategy. (o

How can we compute these plans with loops? How to compute strong-cyclic plans policies?
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Part 1. Non-deterministic Planning

Non-deterministic Planning
Solution Concepts for FOND Planning

Solving FOND Planning
m FOND Planning using Classical Planners
m FOND Planning via SAT
m Compact Policies via ASP/SAT

Conditional Fairness
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Solving FOND Planning
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m FOND Planning via SAT
m Compact Policies via ASP/SAT
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Non-determinism in PDDL

® Non-deterministic effects added to PDDL
for the 5th IPC in 2006.

® Action effect can have a one-of effect:
(oneof el e2 ... en)

® To support uncertainty track in IPC-5.

(:action unstack
:parameters (?bl ?b2 - block)

:precondition (and (not (= ?bl ?b2)) (emptyhand) (clear ?bl) (on

:effect (oneof

(and (holding ?bl) (clear ?b2) (not (emptyhand)) (not (clear ?bl)) (not (on ?bl ?b2)))

5th International Planning Competition: Non-deterministic Track
Call For Participation

systems for conformant, non-deterministic

and probabili ' planing under iftcrent crteria. This doc.
al planning

o vepecacatititn Wngisge ed) 1

Introduction
‘The Sth International Planning Competition (IPC-5) will be
colocated with the 16th International Conference on Auto-
mated Planning and Scheduling. ICAPS-06, to be held in
‘The English Lake District, UK. during June 6-10, 2006. The
IPC is a biannual event where planning systems are evalu-

Robert
Electrical & Cor

ue University
West Lafayette, IN 47907
givan@ecn.purdue.edu

non-deterministic confor-
mant planning, non-deter nal
planning with full observability), and pro lanning
(i conditional probabilistic planning With full obiervabil
ity).

As done in the classical track of IPC, we mnm that plan-
ners that offer different guara ality of their so-
lutions should be -

tracks that will cover the

2 gives a brief background on the different planning tasks
included in the competition as well as the form of the solu-
nsions and restrictions upon

ct. 4 focuses on the
winly how different

(and (clear ?7b2) (on-table ?bl) (not (on ?bl 7b2)))))

;; second effect: fail to grab;
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Non-determinism in PDDL

® Non-deterministic effects added to PDDL
for the 5th IPC in 2006.

® Action effect can have a one-of effect:
(oneof el e2 ... en)

e To support uncertainty track in IPC-5.

(:action pick-up-from-table
:parameters (?b - block)

5th International Planning Competition: Non-deterministic Track
Call For Participation

Blai Bonet
Departamento de Computacin
Universidad i

Abstract

“The Sth International Planning Competition will be colocated
with ICAPS-06. This IPC edition will contain a track on non-
deterministic and probabilistic planning as the continuation
of the probbilistic track at IPC-d. The non-deterministic
track will evaluate systems for conformant, non-determinstic:
and probabilistic planning under differen criteria. This doc-
ument describes the general goals of the track, the planning
tasks 0 be addressed., the representation language and the
evaluation methodology

Introduction

‘The 5th International Planning Competition (IPC-5) will be
colocated with the

IPC is a biannual event where planning systems are evalu-

Robert Givan
Electrical & Computer Engineering
irdue University
‘West Lafayette, IN 47907
givan@ecn.purdue.edu

tracks that will cover the areas of non-deterministic confor-
mant planning, non-deterministic planning (i.c. conditional
planning with full observability), and probabilistic planning
(i.c. conditional probabilistic planning with full observabil-

parisons are not meaningful. Hence
group will be further categorized by the guarantees they pro-
vide, as much as possible given the number of participants.
‘The rest of this document is organized as follows. Sect
2 give different planning tasks
included in the competition as well as the form of the solu-
tions. S nts the extensions and restrictions upon
the PPDDL language to be used. Sect. 4 focuses on the
evaluation aspects of the competition, mainly how different

:precondition (and (emptyhand) (clear ?b) (on-table 7b))

:effect (oneof

(and) ;; no effect - things stay the same!
(and (holding ?b) (not (emptyhand)) (not (on-table ?b)))))
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Al-Planning/fond-domains @ GH: Benchmark for FOND

(7] fond-domains (2w - | ([ewn @ - (Y@ [ - | [ se@® [ -]
P 18ranch © 0Tags [ Q Gotofile @][ Add file - _ About
Flat collection of all FOND domains in
@hn ge pi i - 94c6801 /10 months ago ) 31 Commits circulation.
| venchmarks. process tidyup-mdp #4 10monthsago | OO Readme
A Activiy
D .gitignore Initial commit of all the benchmarks. last year
[ Custom properties
[ README.md move FIP to non-aneof section #3 10 months ago fr Gstars
® 4watching
(I} README r Y dforks
Réport repository
FOND Benchmarks Releases

Mo releases published
Flat collection of all FOND domains in circulation, Notes are our (Christian Muise & Sebastian Sardina) best
guesses &5

Packages
These are planning domains that include the oneor effect to model non-deterministic actions (without
probabilities). The oneof construct was proposed as part of NPDDL (which starts from level 2 of PDDL 2.1)in
the following 2003 workshop paper:

o packages published

Contributors (2)

» Extending PDDL to nondeterminism, limited sensing and iterative conditional plans, Piergiorgio Bertoli,

Alessandro Cimatti, Ugo Dal Lago, Marco Pistare, International Warkshop on PDDL @ ICAPS 2003, pp e ssardina Sebastian Sardina
i [ p—
Planning under non-deterministic oneof actions was then first used in the 2006 IPC-5 as an addition ot the
p (now and track):
Languages
« 5th Planning Competition: N Track Call For Participation, Blai Bonet and
Robert Givan, IPC-5 @ ICAPS 2006. ® PODL100.0%

Notable Changes

» added empty :paraseters block 1o some actions:
Tinish actionin faults, faults-new,and st_faults

https://github.com/AI-Planning/fond-domains
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Al-Planning/fond-utils @ GH: Utilities for FOND

Wity L Insights @ Settings

() fond-utils (usic) (s - ) (owen @) (Y ra@ [ ) (¥ sw® [ -)

Utities for parsing + processing FOND

(@ haz Merge pullrequest #23 fom Abslanningisas-vaidation osstet-2manchsigo OCommS | gomains.
B githubiworkfions Create python-publishymi smonthsago | [ Readme
& MTlcense
 fondutis Merge pull request #22 from Al-lanning/saswalidation 2 months ago
® Codeof conduct
- tests Merge branch mai' into sasvalidation 2monthsago | . Activity
[ giignore improve handiing o versioning #20 421 3monthsago | E Customproperties
o 4srs
[ CODE.OF CONDUCTmd Minor wording update in CoC. 1imonthsago | & 2ustching
D ucense Minor docssdates. lastyear | ¥ 2forks
[ ReADMEMA update readme: remove dummy import in example s months ago
D pyprojectiomi Update pyprojecttom! Smonthsago | Releases (7)
O requirements.xt remove dummy new line Tmonthsago | © w45
anbtays
+orel
01 README @ Codeofconduct &% MITlicense 7 = felaper
Packages

FOND Utilities Wopitages publibed

pubsh your frs package

Utites for parsing and the FOND
oneot effects). At this point the system can: Contributors )
« Normaize a . have asingle top- clause in the effect). @) rmcrsmse
e - : i
ol asetof possi the action. A R ——
solution in i ts te k i jinal FOND problem. Deployments (7)
her PDDL domain and does not deal P itself,
i ; © pypi2 months ago
d in other PRP, FONDSAT, or CFOND-ASP) that
are are based on p producea
g problem. For i
encodings, please refer planners or the P Languages
© Important —_—
o POoLs2ze e pythonaion
The syst arean y nesting of oneof , 5,and and . See o ssson

https://github.com/AI-Planning/fond-utils
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FOND Planning using Classical Planners

One of the most effective ways to solve FOND planning problems is to use classical
planners! Weird...?
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FOND Planning using Classical Planners

{74 One of the most effective ways to solve FOND planning problems is to use classical
planners! Weird...?

They all use a deterministic relaxation of the FOND problem:

All-outcome determinization

Deterministic relaxation Pp of FOND P obtained by substituing non-det actions a with
effects {e1,...,e,} by deterministic actions a',...,a", where a''s effect is e;, for i € [1,n].

® Ppis a deterministic classical planning problem.
® Under reasonable assumptions, Pp is polynomially larger than P.
® There are tools to do the determinization:

https://github.com/AI-Planning/fond-utils
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Week and Online Solutions for FOND Planning

¥# Weak (open loop) solution for P

From any classical plan p for Pp:

® If p generates trajectory sg,...,sy in Pp, set 7(s;) = a if p; € a.
® Run 7 and hope for the best! !
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Week and Online Solutions for FOND Planning

¥# Weak (open loop) solution for P

From any classical plan p for Pp:

® If p generates trajectory sg,...,sy in Pp, set 7(s;) = a if p; € a.
® Run 7 and hope for the best!

¥#* Online (closed loop) solution method for P

Reach goal by interacting with FOND “system” that returns observation s’ € F(a, s):
From current state s, initially sg, compute plan p = p1,..., pn for Pp[s].

Execute prefix a1, ..., a; for p; € a; until state s; observed is goal or different than
state s, predicted in Pp.

If s; is goal, exit; else set s := s; and go back to 1
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Week and Online Solutions for FOND Planning

¥# Weak (open loop) solution for P

From any classical plan p for Pp:

* If p generates trajectory sq,...,Sny in Pp, set w(s;) = a if p; € a.
® Run 7 and hope for the best!

¥#* Online (closed loop) solution method for P

Reach goal by interacting with FOND “system” that returns observation s’ € F(a, s):
From current state s, initially sg, compute plan p = p1,..., pn for Pp[s].

Execute prefix a1, ..., a; for p; € a; until state s; observed is goal or different than
state s, predicted in Pp.

If s; is goal, exit; else set s := s; and go back to 1

Properties: If no dead-end states reachable in P, under mild assumptions, goal state
eventually reached. Else, method is incomplete.
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PRP: Strong Cyclic Policies using Classical Planners

More powerful off-line method, can compute strong cyclic policies:

£+ PRP: Planning for Relevant Policies (Muise, Mclliraith, Beck ICAPS'12)

Run simulated on-line method not just from sy but from every possible sucessor s’ of a
(simulated) observed state s; i.e., s’ € F(a,s) for a executed in s.

If state s’ € F(a, s) is reached from which no classical plan for Pp(s); remove a from
A(s), and start all over again.

Keep policy to 7(s) = a where deterministic version a; is head of shortest classical
prefix found from s to goal.

Properties:
* Method is sound and complete: returns strong cyclic policy if one exists. /&
® More scalable than other methods as it uses classical planners.
e Can be made more efficient by generalizing plans using regression.
e Struggles if there are many “risky” nondeterminism leading to dead-ends.

w
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Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.

So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.
» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

So, we can set our FOND policy to m(s,—1) = an.
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Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.

So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.
» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

So, we can set our FOND policy to 7(s,_1) = ay,. Is that the best we can do? &
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Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.

So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.
» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

So, we can set our FOND policy to 7(s,_1) = ay,. Is that the best we can do? &

What about any other state s’ such that p,q € s'?
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Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.
So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.
» The last action of p has g € Add(a,,) — a,, achieves the goal.
The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

o)

So, we can set our FOND policy to m(s,—1) = a,. Is that the best we can do?

What about any other state s’ such that p,q € s’? Can we also set 7(s') = a,? =
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Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.
So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.

» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

o)

So, we can set our FOND policy to m(s,—1) = a,. Is that the best we can do?

What about any other state s’ such that p,q € s’? Can we also set 7(s') = a,? =
YES! — {p, q} is the regression of goal w.r.t. action a,
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Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.
So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.

» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(a,) = {p, q}.
» Clearly, p,q € sp,—1 —ay's precondition hold just before the goal.

3

So, we can set our FOND policy to m(s,—1) = a,. Is that the best we can do?

=

What about any other state s’ such that p,q € s'? Can we also set 7(s") = a,,?
YES! — {p, q} is the regression of goal w.r.t. action a,,

© Question

If Add(an—1) = {p} and Pre(a,,—1) = {w}, what states s’ can we set 7(s') = a,,—17?
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PRP Rebooted: AAAI'24

PRP Rebooted: Advancing the State of the Art in
FOND Planning
e e

@ PRP Rebooted: Advancing State-of-the-Art in Fond Planning

@ imin

PRP Rebo&%d

Advancing th te of the Art nmn  Planning

Abstract
Fully Observable Non-Deterministic (FOND) planning is a variant of classical symbolic planning in which actions are nondeterministic, with an

action’s outcome known only upen execution. It is a popular planning paradigm with applications ranging from robot planning to dialogue-agent

design and reactive synthesis. Over the last 20 years, a number of approaches to FOND planning have emerged. In this work, we establish a new

https://mulab.ai/project/pr2/
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Shortcomings of Classical Planners for FOND
PRP scales wellas it uses classical planners + regression. However:
e Codebase is highly sophisticated; thousands of lines.

® Uses a lot of tricks: regression, dead-end detection, regression, loop closing,
strong-cyclic check, etc.

Struggle from “risky nondeterminism”, where previous search choices need to be thrown
and restarted.

» non-deterministic actions whose other effects will eventually lead to dead-ends.

® May output very large policies — no guarantees of “compactness”.

Unable to handle mixed fairness environments.
» some actions are fair, others are unfair.

w
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Shortcomings of Classical Planners for FOND
PRP scales wellas it uses classical planners + regression. However:
e Codebase is highly sophisticated; thousands of lines.

® Uses a lot of tricks: regression, dead-end detection, regression, loop closing,
strong-cyclic check, etc.

Struggle from “risky nondeterminism”, where previous search choices need to be thrown
and restarted.

» non-deterministic actions whose other effects will eventually lead to dead-ends.

® May output very large policies — no guarantees of “compactness”.

Unable to handle mixed fairness environments.
» some actions are fair, others are unfair.

© What can we do about these issues? Can we get a simpler, declarative solver for FOND?
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wn

Recall Theory C'(P, n) for Classical Problem P = (F, A, I,G)

e Init: pg forpe I, ~qoforqe Fand g & I

® Goal: p, forpe G

® Actions: Fori=0,1,...,n— 1, and each action a € A
» a; D p; for p € Prec(a)
» a; D pi+1 for each p € Add(a)
» a; D —p;41 for each p € Del(a)

* Persistence: For i =0,...,n — 1, and each atom p € F, where O(p*) and O(p™)
stand for the actions that add and delete p resp.

» pi A Naco(p-)T0;i D Pit1

» i A Naco(pt) @i D TPit1

e Seriality: Foreach i =0,...,n—1,if a # d/, =(a; A a})
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Strong Cyclic Planning as SAT

¢ Key idea: label each state with action and distance to goal.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior,
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Strong Cyclic Planning as SAT

v

> sa;: s; and w(s) = a

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior,

¢ Key idea: label each state with action and distance to goal.
* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
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Strong Cyclic Planning as SAT
¢ Key idea: label each state with action and distance to goal.

v

* Variables of SAT encoding (i is not time index!)
> s;: min “distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a

® Formulas C(M); here M = S(P) and max = |S| — 1:

Smaz TOr initial state sy ; max dist I to goal of length < max
sg for s € Sg and —sq for s & Sq

q

g9 N qag Tbs

x4 N xdy
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Strong Cyclic Planning as SAT
¢ Key idea: label each state with action and distance to goal.

v

* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and max = |S| — 1:
Smaz TOr initial state sy ; max dist I to goal of length < max

sg for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance

g9 N qag ¢ Tbs

9120 N 9¢120

x4 N xdy
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Strong Cyclic Planning as SAT

» Key idea: label each state with action and distance to goal.

* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢

> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and max = |S| — 1:
Smaz TOr initial state sy ; max dist I to goal of length < max

sg for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance .
A sa; OV s’ : some successor gets closer to goal
o t s'€f(as) Zi—1 & & 99 A qag t

9120 N 9¢120

x4 N xdy
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Strong Cyclic Planning as SAT

¢ Key idea: label each state with action and distance to goal.

* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and max = |S| — 1: s¢ A Sag
Smaz TOr initial state sy ; max dist I to goal of length < max a
sg for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance .
5a; D Vyef(a,s) Si_1 ; Some successor gets closer to goal
Si—1 D s; ; if distance < i —1, then <
sa;_1 D sa; ; if distance < i —1, then <3

g9 N qag Tbs

REoENE

x4 N xdy
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Strong Cyclic Planning as SAT

¢ Key idea: label each state with action and distance to goal.
* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and maz = |S| — 1:
Smaz TOr initial state sy ; max dist I to goal of length < max
sg for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance
5a; D Vyef(a,s) Si_1 ; Some successor gets closer to goal
Si—1 D s; ; if distance < i —1, then <
sa;_1 D sa; ; if distance < i —1, then <3
SUmaz D Sy 1 if T(s) = a, all s" € f(a,s), must reach goal
SUmaz D T8, 40t If T(8) = a, then 7(s) #d’, a # d.

ENpENENEA

g9 N qag ¢ Tbs

9120 N 9¢120

x4 N xdy
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Strong Cyclic Planning as SAT

¢ Key idea: label each state with action and distance to goal.
* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and max = |S| — 1:
Smaz TOr initial state sy ; max dist I to goal of length < max
so for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance
5a; D Vyef(a,s) Si_1 ; Some successor gets closer to goal
Si—1 D s; ; if distance < i —1, then <
sa;_1 D sa; ; if distance < i —1, then <3 4120 A 4€120
SUmaz D Saw 3 1T T(8) = a, all 8 € f(a,s), must reach goal e
SUmaz D T8, 40t If T(8) = a, then 7(s) #d’, a # d. @4 A wdy

Model M has a strong-cyclic policy = iff C(M) is satisfiable.

g9 N qag t Tbs

ENpENENEA

If o satisfies C(M), 7(s) = a for Samqy true in o is a strong-cyclic policy that solves M
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Too large encoding: Towards Compact Polocies

Encodings are exhaustive, all states s represented! %

(Geffner & Geffner 2018) proposed an encoding in SAT computing compact policies.
» of course, not in worst case

Can also be adjusted to compute strong policies.

Can also handle dual FOND: fair and unfair actions!

(Yadav & Sardina 2023): alternative encoding in a Answer Set Programming (ASP):
» More compact — exploits ASP first-order language.

» More readable — uses a more declarative style.
» Integrates regression ideas from PRP.

> Exploits ASP technology.
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Compact Controllers via ASP (Yadav & Sardina 2023)

¢ Key idea: devise a finite state controller with n states - (Geffner & Geffner 2018)

Encoding in ASP for FOND problem P = (A, I, G):
® atom(P): for each predicate P € A.

® action(A): for each action A € A. In addition, to define an l
action’s precondition and effects we use the following terms: go(1,2) 0 f
» prec(A, P): atom P is in precondition of action A. lZN{
) . ) ) change(2 1 l
> effect(A, E): associates an action with its E-th effect (one e
per oneoff effect). l chdnge(2)

refue 2
» add(A, E, P): E-th effect of action A adds atom P. l
> del(A, E, P): E-th effect of action A deletes atom P. g(2,3) 3
® init(P): predicate P € [ is true in the initial state. '
g

® goal(P): predicate P € (5 is in the goal condition.
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Define Controllers States and Transitions

Solver to decide:
policy(S, A): action A executed in controller state S.

next(S1, E, S2): S2 is the next controler state if the E-th effect of prescribed action in
S1 ocurrs.
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Define Controllers States and Transitions

Solver to decide:
policy(S, A): action A executed in controller state S.

next(S1, E, S2): S2 is the next controler state if the E-th effect of prescribed action in
S1 ocurrs.

1 state(0..k). ¥ states of the controller
> {policy (S, A): action(A)} = 1:- state(S), S != k.
3 {next(S1, E, S2): state(S82)} = 1 :- policy(S1l, A), effect(A, E).

Defines controller k + 1 states. State k is goal state.
Select one action per controller state (except goal state k).

Defines a transition for each action’s effect to a next controller state.
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Define Controllers States and Transitions

1 holds(S, P) :- policy(S, A), prec(A, P).

> holds(S1, P) :-

3 next(S1, E, S2), holds(S2, P), policy(S1, A), not add(A, E, P).
4 -holds(82, P) :- next(S1, E, S2), policy(S1, A), del(A, E, P).

5 -holds(0, P) :- atom(P), not init(P).

6 holds(k, P) :- goal(P).

Preconditions must hold where action is prescribed.

Regression: P must have been true in the previous controller state.
Progression: P must be false next if action deleted it.

Initial state negative atoms.

@ What must be true at goal controller state k
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Define Solution Concept: Strong Cyclic

1  reachableG(S):- state(S), S = k.
> reachableG(S):- next(S, _, S1), reachableG(S1).
3 :— not reachableG(S), state(S).

Goal controller state is reachable from itself.

Transitive clousure: Any (previous) controller state connected to a controller state that
reaches the goal state, also reaches the controller goal state.

Constraint: No controller state does not reach the goal state.
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Full FOND-ASP Code

state(0..k). Y states of the controller
{policy(S, A): action(A)} = 1:- state(S), S != k.
{next(S1, E, S2): state(S2)} = 1 :- policy(S1, A), effect(A, E).

holds (S, P) :- policy(S, A), prec(A, P).
holds(S1, P) :-
next(S1, E, S2), holds(S2, P), policy(S1, A), not add(A, E, P).

-holds(S2, P) :- next(S1, E, S2), policy(S1, A), del(A, E, P).
-holds (0, P) :- atom(P), not init(P).
holds(k, P) :- goal(P).

reachableG(S):- state(S), S = k.
reachableG(S):- next(S, _, S1), reachableG(S1).
:- not reachableG(S), state(S).

If a model is returned, controller defined in predicates policy/2 and next/3.
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Experimental Results vs. PRP and FOND-SAT
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10: Better in risky non-determinism domains — first five. PRP better in the rest.
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Recap SAT/ASP for FOND Planning

® Declarative elegant solver for FOND planning problems via SAT or ASP.
e Compact controllers: finite state controller with k + 1 states.
® Increase the size when no solution found, and repeat.

e Faster than classical planning based approaches in domains with meaningful
non-determinism (“risky”).

e Can incorporate domain control knowledge (e.g., “do not executre a after b").

e Still struggles with large domains with “easy” non-determinism.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 214/235



Part 1. Non-deterministic Planning

Non-deterministic Planning
Solution Concepts for FOND Planning

Solving FOND Planning
m FOND Planning using Classical Planners
m FOND Planning via SAT
m Compact Policies via ASP/SAT

Conditional Fairness
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Part 1. Non-deterministic Planning

Conditional Fairness
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Can the robot get the money?
Consider an robot in a corridor:

® Robot can move left or right (up to the walls). Unknown size of steps, but > 1

e A price is at some of the end of the corridor.

® Robot doesn’t know its cell, but can sense if there is a wall on left/right after moving.
© Can the robot get the money? How to model the setting?

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 216/235



Can the robot get the money?
Consider an robot in a corridor:

E [Tl [T

® Robot can move left or right (up to the walls). Unknown size of steps, but > 1

e A price is at some of the end of the corridor.

® Robot doesn’t know its cell, but can sense if there is a wall on left/right after moving.
© Can the robot get the money? How to model the setting?

(define (domain tile)
(:predicates (leftWall) (rightWall))
(:action right right 1eft
:parameters ()
:precondition (not rightWall) rich W rich
:effect (oneof () (rightWall))) Iwall right U rwall
(:action left
:parameters ()
:precondition (not leftWall)

ceffect (oneof () (leftWall))) Lef O right
(:action pick lwall et /-\ rwall
:parameters () U

:precondition (or leftWall rightWall) right T left

:effect (rich)))
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Can the robot get the money?

Consider an robot in a corridor:

sl [ [ [ [ I [T}-[IT]]Is

right jeft
© Would this controller work? rich W rich
Iwall" J/ right '€ rwall

=€

right, left pick

lwall .
— 1 2 @ pick

left pick left right

right left

~(O
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Can the robot get the money?

Consider an robot in a corridor:

right jeft
© Would this controller work? YES! rich ‘/Wf_t\ rich
O wall J vignt % rwall
lwall .
@ wa 2 @ pick right, left pick
left pick left A right
Strong-cyclic policy: Retrying left works! right T left
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Can the robot get the money?

Consider an robot in a corridor:

© What about this one?

right
right jeft

rwaly 3 rich W rich

Iwall Jl' right rwall

— 1 2 4 i
lwall @ pick

left pick

right, left

pick

left right
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Can the robot get the money?

Consider an robot in a corridor:

1]

© What about this one? NO!

right
right jeft

rwalﬁ 3 rich W rich
2

Iwall J right rwall

—_— 1 / 4 i
Twall @ pick

left pick

right, left pick

left right

How come? It is also a strong-cyclic policy! =
States where rich true are always reachable..
left action done infinitely many times in initial state

right left

~On
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Conditional Fairness (Rodriguez et al. 2021)

Standard fairness assumption is not enough:
> trying left is not sufficient!

Joumal of Ariificial Intelligence Research 74 (2022) 87-916 Submitted 12/2021: published 06/2022

o
G

» must not move Tlght while tryl ng... FOND Planning with Explicit Fairness Assumptions

Ivan D. Rodriguez IVANDANIELRA@GMAIL.COM
Blai Bonet BONETBLAI@GMAIL.COM

® We need conditional fairness: left is fair as long as B i Bl S
right is not executed. e
» Same for right: fair provided left is not executed. HetorCofiur, TR T

Universitat Pompeu Fabra, Barcelona, Spain
Institucié Catalana de Recerca i Estudis Avangats (ICREA), Barcelona, Spain
Linkiping University, Linkiiping, Sweden

Standard FOND planners cannot handle this: they -

We consider the problem of reaching a propositional goal condition in fully-observable non-

assume that all actions are fair. P

itly. The fairess assumptions are of the form A/ and say that state trajectories that
s of an action a from A in a state s and finite occurrence of actions fror
infinite occurrences of action a in s followed by each one of its possible outcomes. The

H ! + AS P it traectorie tha violate his condition are deemed as unfair and the soluti
(Rodriguez et al. 2021)'s FOND™ in can IS ek i I o i i e
: ol 23 QNP plansii. plioing wiods] iimchied receinlyfo
h a n d Ie . ises of FOND planning with faimess h\umphmh of this form which can also be
| g S _ 1 1 1 i 1 :OND* planner is implemented by reducing FOND? plmmung to answer set programs, and
tron g-cyc lic p olicies with conditional fairness. its performance s evaluated in comparison with FOND and QNP planners, and LTL synthesis tools.

Two other FOND* planners are introduced as well which are more scalable but are not complete.

SEBASTIAN.SARDINA @RMIT.EDU.AU

. must also

» Mixed fairness: some actions are fair, others not. (Best Paper Award |CAPS'21)
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FOND™

Let's generalize FOND:

FOND™ Problem

A FOND™ problem P. = (P,C) is a FOND problem P extended with a set C of
(conditional) fairness assumptions of the form A;/B;, i = 1,...,n and where each A; is a
set of non-deterministic actions in P, and each B; is a set of actions in P disjoint from A;.

Meaning of A/B € C: If a state trajectory contains infinite occurrences of actions a € A in
a state s, and finite occurrences of actions from B, then s must be immediately followed by
each s’ € F(n(s), s) an infinite number of times.

= jf left is executed infinitely many times in s, but right is executed, say, 10 times, then
eventually we will see the left wall.
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FOND Solutions as FOND™ Solutions

FOND™ Problem

A FOND™ problem P. = (P,C) is a FOND problem P extended with a set C' of
(conditional) fairness assumptions of the form A;/B;, i = 1,...,n and where each A; is a
set of non-deterministic actions in P, and each B; is a set of actions in P disjoint from A;.

Strong and strong cyclic planning all have solutions defined by the implicit fairness
assumptions particular to each one of them.
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FOND Solutions as FOND™ Solutions

FOND™ Problem

A FOND™ problem P. = (P,C) is a FOND problem P extended with a set C' of
(conditional) fairness assumptions of the form A;/B;, i = 1,...,n and where each A; is a
set of non-deterministic actions in P, and each B; is a set of actions in P disjoint from A;.

Strong and strong cyclic planning all have solutions defined by the implicit fairness
assumptions particular to each one of them.

Theorem
The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P.=(P,{A/0}), where A is the set of all the non-deterministic actions in P.
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FOND Solutions as FOND™ Solutions

FOND™ Problem

A FOND™ problem P. = (P,C) is a FOND problem P extended with a set C' of
(conditional) fairness assumptions of the form A;/B;, i = 1,...,n and where each A; is a
set of non-deterministic actions in P, and each B; is a set of actions in P disjoint from A;.

Strong and strong cyclic planning all have solutions defined by the implicit fairness
assumptions particular to each one of them.

Theorem

The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P.=(P,{A/0}), where A is the set of all the non-deterministic actions in P.

Theorem

The strong solutions of a FOND problem P are the solutions of the FOND™ problem
P. = (P,().
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FOND™-ASP: An ASP-based Planner
1 % policy, edges, and connectedness
> { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S). TTAL(S)
3 successor(S,T) :- pi(S,A), TRANSITION(S,A,T). GOAL(S)
4 ACTION(A)
5 connected(S,T) :- successor(S,T). Eg?fﬁ?"(s’A’T)
6 connected(S,T) :- connected(S,X), successor(X,T), S != X. BSET(B,I)
7
8 blocked(S,T) :- STATE(S), STATE(T), not connected(S,T).
9 blocked(S,T) :- connected(S,T), terminate(S).
0 blocked(S,T) :- connected(S,T), terminate(T).
i1 blocked(S,T) :- connected(S,T),
12 blocked (X,T) successor (S,X), connected(X,T).
L3
na fair(S) :- pi(S,A), ASET(I,A), blocked(X,S) pi(X,B), BSET(I,B), not blocked(S,X).
[L5
16 % terminating states
17 terminate(S) :- GOAL(S).
s terminate(S) :- fair(S), successor(S,T), terminate(T).
9 terminate(S) :- not fair(S), successor(S,_), terminate(T) successor(S,T)
RO
p1 % reachable states must terminate
p2  :- reachable(S), not terminate(S).
p3 reachable(S) :- INITIAL(S).
p4 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).
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FOND™-ASP: Graphical Intuition...

figure of a transition system, with two states looping, the first selects action A and the second
B. draw successors of each..
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FOND™-ASP: Solution Policy

1 7% policy, edges, and connectedness
> { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S).
3 successor (S,T) :- pi(S,A), TRANSITION(S,A,T).

5 % reachable states must terminate

6 :— reachable(S), not terminate(S).
7 reachable(S) :- INITIAL(S).
g8 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).

2 Select an action per domain state.

3 Edges are transitions of the action selected.
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FOND™-ASP: Solution Policy

1 7% policy, edges, and connectedness
> { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S).
3 successor (S,T) :- pi(S,A), TRANSITION(S,A,T).

5 % reachable states must terminate

6 :— reachable(S), not terminate(S).
7 reachable(S) :- INITIAL(S).
g8 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).

2 Select an action per domain state.

3 Edges are transitions of the action selected.

6 Constraint: every reachable state via the policy needs to eventually terminate.

7-8 Define reachable states via the policy.
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FONDT™-ASP: State Termination

Defines when a state will eventually lead to termination and not get “sucked” in a loop..

1 % terminating states

> terminate(S) :- GOAL(S).

3  terminate(S) :- fair(S), successor(S,T), terminate(T).
4+ terminate(S) :- not fair(S), successor(S,_),

5 terminate(T) : successor(S,T).

2 If the state is a goal state.

3 If state will behave fairly (wrt effects of prescribed action) and one successor state will
terminate.

4 |If state may not behave fairly, and all successors will terminate.
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FOND™-ASP: Fairness

1 connected(S,T)
> connected(S,T)

:- successor(S,T).
:— connected(S,X), successor(X,T), S != X.

4 7% terminating states

5 terminate(S)
6 terminate(S)
7  terminate(S)

GOAL(S) .
fair(S), successor(S,T), terminate(T).
not fair(S), successor(S,_),

8 terminate(T) : successor(S,T).

9

o fair(S) :- pi(S,A), ASET(I,A),

11 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

1-2 States connected by the policy.

4-7 Every path from s to T will terminate somewhere.

10 Fair if any loop that includes actions in a fairness pair A/B (e.g., left and right), will

terminate somewhere else.
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FOND™-ASP: Strong Cyclic

The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P, = (P,{A/0}), where A is the set of all the non-deterministic actions in P.

1 % terminating states

> terminate(S) :- GOAL(S).

3  terminate(S) :- fair(S), successor(S,T), terminate(T).
4+ terminate(S) :- not fair(S), successor(S,_),

5 terminate (T) : successor(S,T).

6
;  fair(S) :- pi(S,A), ASET(I,A), always false
8 blocked(X,S) : pi(X,B), BSET(I,B)% not blocked(S,X).

Line 3 always applies!
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FOND™-ASP: Strong Cyclic

The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P, = (P,{A/0}), where A is the set of all the non-deterministic actions in P.

1 % terminating states

> terminate(S) :- GOAL(S).
3  terminate(S) :- fair(S), successor(S,T), terminate(T).
4+ terminate(S) :- not fair(S), successor(S,_),
5 +arminate (T) : successor(S,T).
( always true

6
+ tair(s)%i- pi(s,4), ASET(I,A), always false
° blocked(X,S) : pi(X,B), BSET(I,B)% not blocked(S,X).

Line 3 always applies!
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FOND™-ASP: Strong Cyclic

The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P, = (P,{A/0}), where A is the set of all the non-deterministic actions in P.

1 % terminating states

[ always applies J

> terminate(S) :- GOAL(S).

3  terminate(S) :- fair(S), successor(S,T), terminate(T)./Q/
4+ terminate(S) :- not fair(S), successor(S,_),

5 +arminate (T) : successor(S,T).

. ( always true

+ tair(s)%i- pi(s,4), ASET(I,A), always false
° blocked(X,S) : pi(X,B), BSET(I,B)% not blocked(S,X).

Line 3 always applies!
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FOND™-ASP: Strong

The strong solutions of a FOND problem P are the solutionsof the FOND™ problem
P. = (P,).

1 % terminating states

> terminate(S) :- GOAL(S).

3  terminate(S) :- fair(S), successor(S,T), terminate(T).

4+ terminate(S) :- not fair(S), successor(S,_),

5 terminate (T) : successor(S,T).

6

7 fair(S) :- pi(S,A), ASET(I,A)

8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 4 always applies!
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FOND™-ASP: Strong

The strong solutions of a FOND problem P are the solutionsof the FOND™ problem
P, = (P,0).

1 % terminating states

> terminate(S) :- GOAL(S).

3  terminate(S) :- fair(S), successor(S,T), terminate(T).

4+ terminate(S) :- not fair(S), successor(S,_),

5 arminate (T) : successor(S,T).

:

7 fair(sS)7:- pi(S,A), ASET(I,A)

8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 4 always applies!
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FOND™-ASP: Strong

The strong solutions of a FOND problem P are the solutionsof the FOND™ problem
P, = (P,0).

1 % terminating states

> terminate(S) :- GOAL(S). -

3 terminate(S) :- fair(S), successor(S,T)ﬁi always applies J

4 terminate(S) :- not fair(S), successor(S,_),fyr

5 arminate (T) : successor(S,T).

:

7 fair(sS)7:- pi(S,A), ASET(I,A)

8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 4 always applies!
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Discussion

® We tested FOND"-ASP experimentally:

» Only planner that can solve FOND+ problems!

» Performs better than FOND-SAT and LTL
synthesis tool STRIX.

» PRP scales up better for FOND tasks.

» Limitation: state space grounding.
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Discussion

® We tested FOND™-ASP experimentally:

» Only planner that can solve FOND+ problems!

» Performs better than FOND-SAT and LTL
synthesis tool STRIX.

» PRP scales up better for FOND tasks. e

» Limitation: state space grounding.

back  parking2 »

® FOND = simple extension of classical planning t.
gatel
» Just add oneor in effects!
e But brings radical changes: onshlp  at harbor O—
s . gate2

» Complexity up to EXPTIME-complete.
» Builds plans with loops!

» Can model scenarios with "re-tries” transit1
» Can deal with adversarial domains. N
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Discussion

We tested FOND™-ASP experimentally:
» Only planner that can solve FOND+ problems!
» Performs better than FOND-SAT and LTL
synthesis tool STRIX.
» PRP scales up better for FOND tasks. e
» Limitation: state space grounding.

back  parking2 »

FOND = simple extension of classical planning
» Just add oneof in effects!

at_harbor

e But brings radical changes: °“’ O &)
» Complexity up to EXPTIME-complete. i
» Builds plans with loops!
» Can model scenarios with "re-tries” transitt
» Can deal with adversarial domains. A

FOND™ and domains with “qualitative” numbers?
» e.g., distance to the wall
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Discussi

We tested FOND™-ASP experimentally:

on

» Only planner that can solve FOND+ problems!
» Performs better than FOND-SAT and LTL

synthesis tool STRIX.

> PRP scales up better for FOND tasks.
» Limitation: state space grounding.

» Just add oneor in effects!

e But brings radical changes:

» Complexity up to EXPTIME-complete.

Builds plans with loops!

>
» Can model scenarios with "re-tries”
» Can deal with adversarial domains.

FOND = simple extension of classical planning

FOND™ and domains with “qualitative” .numbers?

onship
s

at_harbor

» e.g., distance to the wall
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Que vimos? «%

Busqueda as a general problem solving method:
> Representacién: state model (a graph!).
» Uninformed methods: BrFS, DFS, IDS, UCS.
» Informed methods: A* and heuristics.
» Heuristics as problem relaxation.
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Que vimos? «%

Busqueda as a general problem solving method:

> Representacién: state model (a graph!).

» Uninformed methods: BrFS, DFS, IDS, UCS.
» Informed methods: A* and heuristics.

» Heuristics as problem relaxation.

Classical Planning = Al Search + Al KR

» Model-based approach to autonomous behavior.
Languages: STRIP and PDDL.

Heuristic extraction by relaxing the representation.
Delete-relaxation heuristic: h™

Approximations: h,q4, Amax, Rrr.

Planning graphs.

vVvvyyvyy
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Que vimos? «%

Busqueda as a general problem solving method:

> Representacién: state model (a graph!).

» Uninformed methods: BrFS, DFS, IDS, UCS.
» Informed methods: A* and heuristics.

» Heuristics as problem relaxation.

Classical Planning = Al Search + Al KR

Model-based approach to autonomous behavior.
Languages: STRIP and PDDL.

Heuristic extraction by relaxing the representation.
Delete-relaxation heuristic: h™

Approximations: h,q4, Amax, Rrr.

Planning graphs.

ND Planning: Non-determinism
Non-deterministic state models (no probabilities!)
PDDL with one-of effects + Policies.

Solution concepts: weak, strong, strong-cyclic.
Fairness assumption on environment.
Computing policies.

B F

VYYYYO VvVyVvVYVYy
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Al Planning and Control Synthesis in SE ¥

® What if we want to plan for more complex goals?
Elevator controller: every passenger floor
requests needs to be eventually fulfilled, but never
Al AUTOMATED PLANNING SOFTWARE ENGINEERING
have more than 10 passengers on board. , CohTeO LR THES's

¢ Event-driven systems: some events cannot be
planned/controlled (e.g., user aborts transaction)

¢ |nfinite behavior: continuous operation, never
stop.
What are the goals if we never finish? Infinite
games vs. finite games

¢ Compositional planning/synthesis: software
components described separately
Plan on different PDDLs and the combine.
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LaFHIS - Laboratory on Fundamentals and Tools for Software Engineering

I_AF H | S ‘ The Tools and Foundations
for Software Engineering Lab

What we do The Lab News Contact

R&D Augmentation

We help organisatians snlve difficult nrohlams by annlving
state of the art automated software engineering methods;
technigues and to00IS. We support our partners in
bootstrapping their R&D activities, designing strategies;
identifying key teghnologies and collaboratively developing
solutions.

We incorporate, combing ah@, adapt state of*the art
technlques from program analysis, program, repair, program
understanding domain _snacific hrnmrqmmmg languages,
ano model-based software engineering as needed to
address the specific contexts and pottlenecks that our
partners have.
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‘.== LA F H | S ‘ The Tools and Foundations
T for Software Engineering Lab
What we do The Lab News Contact

x

R&D Augmentation

We he|p orgamqnfmm anlve difficnlt nmhlamq h\t ﬁmnl\nnm
state of the art automated software englneermg fethods=
technigues and t1o0IS. We support our partners in
bootstrapping their R&D activities, designing strategiesy 4
Identifying key technologwes and collaboratwely developing

solutions. »
7 Q\

We imcorporate, combing ahe adapt stafe ofthe art

technlgques from program analysis, program repair, program =
2 Understanding domain_specific nmnrnmmmg languages, ‘Sa

anc model-based software epgineering as needed to

addaress the Specific contexts and pottlenecks that our

partners have.
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Contact sebastian.sardina@rmit.edu.au - https://ssardina.github.io/
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