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Planning Models: Vanilla Model for Classical AI Planning

• finite and discrete state space S
• a known initial state s0 ∈ S
• a set SG ⊆ S of goal states
• actions A(s) ⊆ A applicable in each s ∈ S
• a deterministic transition function s′ = f(a, s) for a ∈ A(s)
• positive action costs c(a, s)

A solution/plan is seq. of applicable actions π = a0, . . . , an that maps s0 into SG.

Plan is optimal if it minimizes the sum of action costs.

Different models obtained by relaxing assumptions in bold.
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Planning with non-deterministic actions
What if an action may yield different effect outcomes?

• Slipery floor: you may slip and fall (and maybe hurt yourself).

• Slipery blocksworld:
if you stack or unstack a block, it may fall down to the table.

• Dice rolling: if you roll a die, it may yield different outcomes:
1,2,3,4,5 or 6.

• Robot operation: when using the gripper, it may succeed or
fail to pick an object (and may need to retry).

• Finding parking: when visiting a block you may or may not find parking space (if not,
keep going around the block).

• Walking on beam: if you do a step on a beam, you may advance or fall down.

• Walking on corridor: if you do a step you may or may not be at the end of the corridor.
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Example: Harbor Management FOND Problem

Very simple harbor management domain:
1 Unload a single item from a ship.
2 Park the item in a storage facility.
3 Deliver it to gates (to be loaded into

tracks).

Storage and gates may be unavailable,
but we can always wait and move
containers around. (Example 11.1 in Acting, Planning, and Learning

Ghallab, Nau, Traverso 2025)
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Planning with Markov Decision Processes

Goal MDPs are fully observable, probabilistic state models:

1 a state space S
2 initial state s0 ∈ S
3 a set G ⊆ S of goal states
4 actions A(s) ⊆ A applicable in each state s ∈ S
5 transition probabilities Pa(s

′ | s) for s ∈ S and a ∈ A(s) Hand-Point-Left
6 action costs c(a, s) > 0

• Solutions are functions (called “policies”) mapping states into actions; π : S 7→ A
I π(s) states what action to do in state s

• Optimal solutions minimize expected cost to goal.

• Reward-based MDPs involve rewards instead of costs, and discount factor γ ∈ [0, 1)
in place of goals. They underlie theory of RL.
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FOND Planning: Fully-observable Non-Deterministic Planning

A FOND state model is like the “logical” counterpart of Goal MDPs:

1 a state space S
2 initial state s0 ∈ S
3 a set G ⊆ S of goal states
4 actions A(s) ⊆ A applicable in each state s ∈ S
5 non-det state transition function F : successors s′ ∈ F (a, s), s ∈ S, a ∈ A(s) Hand-Point-Left
6 action costs c(a, s) = 1

• Main change from Classical Planning: F (a, s) maps to set of possible states (not to
one unique state).
I Nature decides what next state is reached after action a is applied in state s —

non-determinism.
I ... but agent will observe the state reached after a is applied.

• Main change from MDPs: possible transitions s ∈ F (a, s) not weighted by probabilities.
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Fully Observable Non-Deterministic Planning (FOND)

Planning
System
(Solver)

Initial State

Non-deterministic
Operators
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Plan?
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Example: Does it have a solution?

• Is it possible to always deliver the
containers to the gates?

• If so, what is the sequence of
actions?

Need to know what to do in each state!

Policy
A policy π is a partial function from
states s into actions a; that is, π : S 7→ A.

(when undefined, agent stops acting)

Is there a “good” policy π?

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Does π1 solve the task?

Policy π1

S π1(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 back
transit1 move
transit2 move
transit3 move

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What about π2?

Policy π2

S π2(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 deliver
transit1 move
transit2 move
transit3 move

(Example 11.1 in Acting, Planning, and Learning
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Example: Which one is better?
Policy π2

S π(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 back
transit1 move
transit2 move
transit3 move

Policy π4

S π(s)

on_ship unload
at_harbor park

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What if transit1 is a dead-end?

Policy π2

S π2(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 deliver
transit2 move
transit3 move

But could π2 succeed (sometimes)?

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What if parking2 is not connected to gates?

Policy π1

S π1(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 back
transit2 move
transit3 move

Storage parking1 may never be available!

But, what if we know parking1 would
eventually becomes available?

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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So, some lessons...

• Classical plans as sequences of actions are not
enough to solve FOND problems.

• We need to use a policy that maps states into
actions.
I More like “programs” with conditionals and loops!

• Some (bad) policies are better than others.

• Some policies may achieve the goal, but not
always.

• Some policies will achieve the goal if environment
is not too adversarial — not unfair.

This seems way more complex planning!
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Planning is hard!
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Kinds of Solution Policies

Acting, Planning, and Learning Ghallab, Nau, Traverso 2025
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FOND Planning: Solution Concepts
Running policy π from state s yields trajectories runs:
• π-trajectories s0, . . . , sn, such that si+1 ∈ F (ai, si), ai = π(si), for i ∈ [0, n− 1].

• π-trajectory maximal if 1) sn is goal state, 2) π(sn) = ⊥, or 3) n = ∞ (π is infinite)

FOND Planning Solution Concepts

1 π is a weak solution if there is a π-trajectory from s0 that reaches goal.

I At least one execution of the plan reaches the goal.

2 π is strong solution if all max π-trajectories from s0 reach the goal.

I All executions are guaranteed to reach the goal (in a known bounded number of actions!).
I Plans may have conditionals (but no loops!)

3 π is strong cyclic solution if for each state s reachable from s0 with a π-trajectory,
there is a π-trajectory from s to goal.

I Always a possibility to reach the goal.
I Goal will be achieved if environment is not “adversarial”
I Plans may have conditionals & loops!
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Weak Plans

S π1(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 back
transit2 move
transit3 move

D Policy π is a weak plan as there is a trajectory that reaches the goal.
I {on_ship}, {at_harbor}, {parking1}, {gate1}

6 But π is not a strong plan.
I {on_ship}, {at_harbor}, {parking2}, {at_harbor}, {parking2}, {at_harbor}, ...
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What about strong cyclic?

S π1(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 back
transit1 move
transit2 move
transit3 move

Policy π is strong cyclic solution if for each state s reachable from s0 with a π-trajectory,
there is a π-trajectory from s to goal.

• Yes!, policy never “loses” the possibility to get the goal
• But, it may loop “forever” in some states.
• We can make π strong by changing it to π1(parking2) = deliver.
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Strong cyclic policies: when do they work?
Question-Circle Is there a strong plan?

No!
Best we can do is:

S π1(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 back
transit1 move
transit2 move
transit3 move

Question-Circle When will this policy reach the goal?

When executed in “fair” environments!

Fairness Environments
A trajectory σ is an unfair execution of π if a state s appears infinitely often in σ but some
outcome state s′ ∈ F (π(a), s) only appears a finite number of times in σ.
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Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

Question-Circle What type of environments?

• Where each effect listed has indeed
non-zero probability.

• Re-trying is an effective strategy.

I rolling a die until it shows a 6.
I driving around the block until a parking

space is available.
I pour into cup until full.

Fairness Environments
A trajectory σ is an unfair execution of π if a state s appears infinitely often in σ but some
outcome state s′ ∈ F (π(a), s) only appears a finite number of times in σ.
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Recap: Solution plans for FOND planning
• Classical sequential plans are not enough to solve FOND problems.

I We need more flexible behavior description (controlller) for agents

• We use policies mapping states into actions.
I Allow conditional and loops.

• Weak plans may get the goal if we are lucky — not really adequate.

• Strong plans are very demanding: they require that all possible executions of the plan
reach the goal. Often there is no strong plan!

• Strong-cyclic plans are more flexible: they allow loops and conditionals, and they
guarantee that the goal will be reached if the environment is fair.

• Many environments are fair: retrying is an effective strategy.

Question-Circle Question
How can we compute these plans with loops? How to compute strong-cyclic plans policies?
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Part 1: Non-deterministic Planning

1 Non-deterministic Planning

2 Solution Concepts for FOND Planning

3 Solving FOND Planning
FOND Planning using Classical Planners
FOND Planning via SAT
Compact Policies via ASP/SAT

4 Conditional Fairness
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Non-determinism in PDDL

• Non-deterministic effects added to PDDL
for the 5th IPC in 2006.

• Action effect can have a one-of effect:

(oneof e1 e2 ... en)

• To support uncertainty track in IPC-5.

(:action unstack
:parameters (?b1 ?b2 - block)
:precondition (and (not (= ?b1 ?b2)) (emptyhand) (clear ?b1) (on ?b1 ?b2))
:effect (oneof

(and (holding ?b1) (clear ?b2) (not (emptyhand)) (not (clear ?b1)) (not (on ?b1 ?b2)))
(and (clear ?b2) (on-table ?b1) (not (on ?b1 ?b2)))))

;; second effect: fail to grab; ?b1 ends on table
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(oneof e1 e2 ... en)

• To support uncertainty track in IPC-5.

(:action pick-up-from-table
:parameters (?b - block)
:precondition (and (emptyhand) (clear ?b) (on-table ?b))
:effect (oneof

(and) ;; no effect - things stay the same!
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AI-Planning/fond-domains @ GH: Benchmark for FOND

https://github.com/AI-Planning/fond-domains
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AI-Planning/fond-utils @ GH: Utilities for FOND

https://github.com/AI-Planning/fond-utils
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FOND Planning using Classical Planners

One of the most effective ways to solve FOND planning problems is to use classical
planners! Weird...?

They all use a deterministic relaxation of the FOND problem:

All-outcome determinization
Deterministic relaxation PD of FOND P obtained by substituing non-det actions a with
effects {e1, . . . , en} by deterministic actions a1, . . . , an, where ai’s effect is ei, for i ∈ [1, n].

• PD is a deterministic classical planning problem.

• Under reasonable assumptions, PD is polynomially larger than P .

• There are tools to do the determinization:
https://github.com/AI-Planning/fond-utils
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Week and Online Solutions for FOND Planning

Weak (open loop) solution for P
From any classical plan ρ for PD:
• If ρ generates trajectory s0, . . . , sN in PD, set π(si) = a if ρi ∈ a.
• Run π and hope for the best!

Online (closed loop) solution method for P

Reach goal by interacting with FOND “system” that returns observation s′ ∈ F (a, s):
1 From current state s, initially s0, compute plan ρ = ρ1, . . . , ρN for PD[s].
2 Execute prefix a1, . . . , ai for ρi ∈ ai until state si observed is goal or different than

state s′i predicted in PD.
3 If si is goal, exit; else set s := si and go back to 1

Properties: If no dead-end states reachable in P , under mild assumptions, goal state
eventually reached. Else, method is incomplete.
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PRP: Strong Cyclic Policies using Classical Planners
More powerful off-line method, can compute strong cyclic policies:

PRP: Planning for Relevant Policies (Muise, McIllraith, Beck ICAPS’12)

1 Run simulated on-line method not just from s0 but from every possible sucessor s′ of a
(simulated) observed state s; i.e., s′ ∈ F (a, s) for a executed in s.

2 If state s′ ∈ F (a, s) is reached from which no classical plan for PD(s); remove a from
A(s), and start all over again.

3 Keep policy to π(s) = a where deterministic version ai is head of shortest classical
prefix found from s to goal.

Properties:
• Method is sound and complete: returns strong cyclic policy if one exists.
• More scalable than other methods as it uses classical planners.
• Can be made more efficient by generalizing plans using regression.
• Struggles if there are many “risky” nondeterminism leading to dead-ends.
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Regression to Generalize Policies

Consider the following situation:

1 Goal is G = {g}.
2 Classical plan ρ = a1, . . . , an optimally achieves G from state s0 in PD.
3 So, ρ yields trajectory s0, s1, . . . , sn in PD such that g ∈ sn.

I The last action of ρ has g ∈ Add(an) — an achieves the goal.
4 The precondition of an is Pre(an) = {p, q}.

I Clearly, p, q ∈ sn−1 – an’s precondition hold just before the goal.

So, we can set our FOND policy to π(sn−1) = an.

Is that the best we can do?

What about any other state s′ such that p, q ∈ s′? Can we also set π(s′) = an?
YES! — {p, q} is the regression of goal w.r.t. action an

Question-Circle Question
If Add(an−1) = {p} and Pre(an−1) = {w}, what states s′ can we set π(s′) = an−1?
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PRP Rebooted: AAAI’24

https://mulab.ai/project/pr2/
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Shortcomings of Classical Planners for FOND

PRP scales wellas it uses classical planners + regression. However:
• Codebase is highly sophisticated; thousands of lines.

• Uses a lot of tricks: regression, dead-end detection, regression, loop closing,
strong-cyclic check, etc.

• Struggle from “risky nondeterminism”, where previous search choices need to be thrown
and restarted.
I non-deterministic actions whose other effects will eventually lead to dead-ends.

• May output very large policies — no guarantees of “compactness”.

• Unable to handle mixed fairness environments.
I some actions are fair, others are unfair.

Question-Circle What can we do about these issues? Can we get a simpler, declarative solver for FOND?
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Recall Theory C(P, n) for Classical Problem P = 〈F,A, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F and q 6∈ I

• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ A
I ai ⊃ pi for p ∈ Prec(a)

I ai ⊃ pi+1 for each p ∈ Add(a)

I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p resp.
I pi ∧ ∧a∈O(p−)¬ai ⊃ pi+1

I ¬pi ∧ ∧a∈O(p+)¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)
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Strong Cyclic Planning as SAT
Key idea: label each state with action and distance to goal.

• Variables of SAT encoding (i is not time index!)
I si: min “distance” from s to goal in policy is at most i
I sai: si and π(s) = a

• Formulas C(M); here M = S(P ) and max = |S| − 1:

1 smax for initial state sI ; max dist I to goal of length ≤ max
2 s0 for s ∈ SG and ¬s0 for s 6∈ SG

3 si ⊃ ∨a∈A(s) sai ; choose action in s, preserve distance
4 sai ⊃ ∨s′∈f(a,s) s

′
i−1 ; some successor gets closer to goal

5 si−1 ⊃ si ; if distance ≤ i− 1, then ≤ i
6 sai−1 ⊃ sai ; if distance ≤ i− 1, then ≤ i
7 samax ⊃ s′max ; if π(s) = a, all s′ ∈ f(a, s), must reach goal
8 samax ⊃ ¬sa′max; if π(s) = a, then π(s) 6= a′, a 6= a′.

s

t

q r

s6 ∧ sa6

r5 ∧ rb5q9 ∧ qa9

q120 ∧ qc120

a

a
a

b

b

c

x

q9 ∧ qa9

b

b

x4 ∧ xd4

Theorem
1 Model M has a strong-cyclic policy π iff C(M) is satisfiable.
2 If σ satisfies C(M), π(s) = a for samax true in σ is a strong-cyclic policy that solves M
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Too large encoding: Towards Compact Polocies

• Encodings are exhaustive, all states s represented! 6

• (Geffner & Geffner 2018) proposed an encoding in SAT computing compact policies.
I of course, not in worst case

• Can also be adjusted to compute strong policies.

• Can also handle dual FOND: fair and unfair actions!

• (Yadav & Sardina 2023): alternative encoding in a Answer Set Programming (ASP):
I More compact — exploits ASP first-order language.
I More readable — uses a more declarative style.
I Integrates regression ideas from PRP.
I Exploits ASP technology.
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Compact Controllers via ASP (Yadav & Sardina 2023)

Key idea: devise a finite state controller with n states - (Geffner & Geffner 2018)

Encoding in ASP for FOND problem P = 〈A, I,G〉:
• atom(P): for each predicate P ∈ A.

• action(A): for each action A ∈ A. In addition, to define an
action’s precondition and effects we use the following terms:
I prec(A, P): atom P is in precondition of action A.
I effect(A, E): associates an action with its E-th effect (one

per oneoff effect).
I add(A, E, P): E-th effect of action A adds atom P.
I del(A, E, P): E-th effect of action A deletes atom P.

• init(P): predicate P ∈ I is true in the initial state.

• goal(P): predicate P ∈ G is in the goal condition.

0

1

2

3

g

4

go(1, 2)

change(2)

refuel

go(2, 3)

change(2)

l ∧ f

l

f
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Define Controllers States and Transitions

Solver to decide:
1 policy(S, A): action A executed in controller state S.
2 next(S1, E, S2): S2 is the next controler state if the E-th effect of prescribed action in

S1 ocurrs.

1 state(0..k). % states of the controller
2 {policy(S, A): action(A)} = 1:- state(S), S != k.
3 {next(S1, E, S2): state(S2)} = 1 :- policy(S1, A), effect(A, E).

1 Defines controller k + 1 states. State k is goal state.
2 Select one action per controller state (except goal state k).
3 Defines a transition for each action’s effect to a next controller state.
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Define Controllers States and Transitions

1 holds(S, P) :- policy(S, A), prec(A, P).
2 holds(S1, P) :-
3 next(S1, E, S2), holds(S2, P), policy(S1, A), not add(A, E, P).
4 -holds(S2, P) :- next(S1, E, S2), policy(S1, A), del(A, E, P).
5 -holds(0, P) :- atom(P), not init(P).
6 holds(k, P) :- goal(P).

1 Preconditions must hold where action is prescribed.
2

3 Regression: P must have been true in the previous controller state.
4 Progression: P must be false next if action deleted it.
5 Initial state negative atoms.
6 What must be true at goal controller state k
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Define Solution Concept: Strong Cyclic

1 reachableG(S):- state(S), S = k.
2 reachableG(S):- next(S, _, S1), reachableG(S1).
3 :- not reachableG(S), state(S).

1 Goal controller state is reachable from itself.
2 Transitive clousure: Any (previous) controller state connected to a controller state that

reaches the goal state, also reaches the controller goal state.
3 Constraint: No controller state does not reach the goal state.
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Full FOND-ASP Code

1 state(0..k). % states of the controller
2 {policy(S, A): action(A)} = 1:- state(S), S != k.
3 {next(S1, E, S2): state(S2)} = 1 :- policy(S1, A), effect(A, E).
4

5 holds(S, P) :- policy(S, A), prec(A, P).
6 holds(S1, P) :-
7 next(S1, E, S2), holds(S2, P), policy(S1, A), not add(A, E, P).
8 -holds(S2, P) :- next(S1, E, S2), policy(S1, A), del(A, E, P).
9 -holds(0, P) :- atom(P), not init(P).

10 holds(k, P) :- goal(P).
11

12 reachableG(S):- state(S), S = k.
13 reachableG(S):- next(S, _, S1), reachableG(S1).
14 :- not reachableG(S), state(S).

If a model is returned, controller defined in predicates policy/2 and next/3.
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Experimental Results vs. PRP and FOND-SAT
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Recap SAT/ASP for FOND Planning

• Declarative elegant solver for FOND planning problems via SAT or ASP.

• Compact controllers: finite state controller with k + 1 states.

• Increase the size when no solution found, and repeat.

• Faster than classical planning based approaches in domains with meaningful
non-determinism (“risky”).

• Can incorporate domain control knowledge (e.g., “do not executre a after b”).

• Still struggles with large domains with “easy” non-determinism.
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Part 1: Non-deterministic Planning

1 Non-deterministic Planning

2 Solution Concepts for FOND Planning

3 Solving FOND Planning
FOND Planning using Classical Planners
FOND Planning via SAT
Compact Policies via ASP/SAT

4 Conditional Fairness
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Can the robot get the money?
Consider an robot in a corridor:

· · · · · ·

• Robot can move left or right (up to the walls). Unknown size of steps, but ≥ 1
• A price is at some of the end of the corridor.
• Robot doesn’t know its cell, but can sense if there is a wall on left/right after moving.
Question-Circle Can the robot get the money? How to model the setting?

(define (domain tile)
(:predicates (leftWall) (rightWall))
(:action right

:parameters ()
:precondition (not rightWall)
:effect (oneof () (rightWall)))

(:action left
:parameters ()
:precondition (not leftWall)
:effect (oneof () (leftWall)))

(:action pick
:parameters ()
:precondition (or leftWall rightWall)
:effect (rich)))

lwall rwall

rich
lwall

rich
rwallrich

right

right, left

left

pick

left

pick

right

right

left
leftright
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Can the robot get the money?

Consider an robot in a corridor:

· · · · · ·

Question-Circle Would this controller work?

YES!

1 2 3

left pick

lwall

Strong-cyclic policy: Retrying left works!
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Can the robot get the money?
Consider an robot in a corridor:

· · · · · ·

Question-Circle What about this one?

NO!

1 2

3

4

left pick

right

lwall

rwall

How come? It is also a strong-cyclic policy!
States where rich true are always reachable..

left action done infinitely many times in initial state
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Conditional Fairness (Rodriguez et al. 2021)

• Standard fairness assumption is not enough:
I trying left is not sufficient!
I must not move right while trying...

• We need conditional fairness: left is fair as long as
right is not executed.
I Same for right: fair provided left is not executed.

• Standard FOND planners cannot handle this: they
assume that all actions are fair.

• (Rodriguez et al. 2021)’s FOND+ in ASP can
handle:
I Strong-cyclic policies with conditional fairness.
I Mixed fairness: some actions are fair, others not. (Best Paper Award ICAPS’21)
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FOND+

Let’s generalize FOND:

FOND+ Problem
A FOND+ problem Pc = 〈P,C〉 is a FOND problem P extended with a set C of
(conditional) fairness assumptions of the form Ai/Bi, i = 1, . . . , n and where each Ai is a
set of non-deterministic actions in P , and each Bi is a set of actions in P disjoint from Ai.

Meaning of A/B ∈ C: If a state trajectory contains infinite occurrences of actions a ∈ A in
a state s, and finite occurrences of actions from B, then s must be immediately followed by
each s′ ∈ F (π(s), s) an infinite number of times.

/ if left is executed infinitely many times in s, but right is executed, say, 10 times, then
eventually we will see the left wall.
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FOND Solutions as FOND+ Solutions

FOND+ Problem
A FOND+ problem Pc = 〈P,C〉 is a FOND problem P extended with a set C of
(conditional) fairness assumptions of the form Ai/Bi, i = 1, . . . , n and where each Ai is a
set of non-deterministic actions in P , and each Bi is a set of actions in P disjoint from Ai.

Strong and strong cyclic planning all have solutions defined by the implicit fairness
assumptions particular to each one of them.

Theorem
The strong-cyclic solutions of a FOND problem P are the solutions of the FOND+ problem
Pc = 〈P, {A/∅}〉, where A is the set of all the non-deterministic actions in P .

Theorem
The strong solutions of a FOND problem P are the solutions of the FOND+ problem
Pc = 〈P, ∅〉.
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FOND+-ASP: An ASP-based Planner
1 % policy, edges, and connectedness
2 { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S).
3 successor(S,T) :- pi(S,A), TRANSITION(S,A,T).
4
5 connected(S,T) :- successor(S,T).
6 connected(S,T) :- connected(S,X), successor(X,T), S != X.
7
8 blocked(S,T) :- STATE(S), STATE(T), not connected(S,T).
9 blocked(S,T) :- connected(S,T), terminate(S).

10 blocked(S,T) :- connected(S,T), terminate(T).
11 blocked(S,T) :- connected(S,T),
12 blocked(X,T) : successor(S,X), connected(X,T).
13
14 fair(S) :- pi(S,A), ASET(I,A), blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).
15
16 % terminating states
17 terminate(S) :- GOAL(S).
18 terminate(S) :- fair(S), successor(S,T), terminate(T).
19 terminate(S) :- not fair(S), successor(S,_), terminate(T) : successor(S,T).
20
21 % reachable states must terminate
22 :- reachable(S), not terminate(S).
23 reachable(S) :- INITIAL(S).
24 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).

figs/fondplus.lp

STATE(S)
INITIAL(S)
GOAL(S)
ACTION(A)
TRANSITION(S,A,T)
ASET(A,I)
BSET(B,I)

just 24 lines!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 221/235



FOND+-ASP: Graphical Intuition...

figure of a transition system, with two states looping, the first selects action A and the second
B. draw successors of each..
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FOND+-ASP: Solution Policy

1 % policy , edges , and connectedness
2 { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S).
3 successor(S,T) :- pi(S,A), TRANSITION(S,A,T).
4

5 % reachable states must terminate
6 :- reachable(S), not terminate(S).
7 reachable(S) :- INITIAL(S).
8 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).

2 Select an action per domain state.

3 Edges are transitions of the action selected.

6 Constraint: every reachable state via the policy needs to eventually terminate.

7-8 Define reachable states via the policy.
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FOND+-ASP: State Termination

Defines when a state will eventually lead to termination and not get “sucked” in a loop..

1 % terminating states
2 terminate(S) :- GOAL(S).
3 terminate(S) :- fair(S), successor(S,T), terminate(T).
4 terminate(S) :- not fair(S), successor(S,_),
5 terminate(T) : successor(S,T).

2 If the state is a goal state.

3 If state will behave fairly (wrt effects of prescribed action) and one successor state will
terminate.

4 If state may not behave fairly, and all successors will terminate.
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FOND+-ASP: Fairness

1 connected(S,T) :- successor(S,T).
2 connected(S,T) :- connected(S,X), successor(X,T), S != X.
3

4 % terminating states
5 terminate(S) :- GOAL(S).
6 terminate(S) :- fair(S), successor(S,T), terminate(T).
7 terminate(S) :- not fair(S), successor(S,_),
8 terminate(T) : successor(S,T).
9

10 fair(S) :- pi(S,A), ASET(I,A),
11 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

1-2 States connected by the policy.

4-7 Every path from S to T will terminate somewhere.

10 Fair if any loop that includes actions in a fairness pair A/B (e.g., left and right), will
terminate somewhere else.
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FOND+-ASP: Strong Cyclic

Theorem
The strong-cyclic solutions of a FOND problem P are the solutions of the FOND+ problem
Pc = 〈P, {A/∅}〉, where A is the set of all the non-deterministic actions in P .

1 % terminating states
2 terminate(S) :- GOAL(S).
3 terminate(S) :- fair(S), successor(S,T), terminate(T).
4 terminate(S) :- not fair(S), successor(S,_),
5 terminate(T) : successor(S,T).
6

7 fair(S) :- pi(S,A), ASET(I,A),
8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 3 always applies!

always false
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FOND+-ASP: Strong

Theorem
The strong solutions of a FOND problem P are the solutionsof the FOND+ problem
Pc = 〈P, ∅〉.

1 % terminating states
2 terminate(S) :- GOAL(S).
3 terminate(S) :- fair(S), successor(S,T), terminate(T).
4 terminate(S) :- not fair(S), successor(S,_),
5 terminate(T) : successor(S,T).
6

7 fair(S) :- pi(S,A), ASET(I,A),
8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 4 always applies!

always false
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Discussion

• We tested FOND+-ASP experimentally:
I Only planner that can solve FOND+ problems!
I Performs better than FOND-SAT and LTL

synthesis tool STRIX.
I PRP scales up better for FOND tasks.
I Limitation: state space grounding.

• FOND = simple extension of classical planning
I Just add oneof in effects!

• But brings radical changes:
I Complexity up to EXPTIME-complete.
I Builds plans with loops!
I Can model scenarios with ”re-tries”
I Can deal with adversarial domains.

• FOND+ and domains with “qualitative” numbers?
I e.g., distance to the wall
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• But brings radical changes:
I Complexity up to EXPTIME-complete.
I Builds plans with loops!
I Can model scenarios with ”re-tries”
I Can deal with adversarial domains.

• FOND+ and domains with “qualitative” numbers?
I e.g., distance to the wall Qualitative Numeric

Planning (QNP)
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Que vimos?

1 Busqueda as a general problem solving method:
I Representación: state model (a graph!).
I Uninformed methods: BrFS, DFS, IDS, UCS.
I Informed methods: A* and heuristics.
I Heuristics as problem relaxation.

2 Classical Planning = AI Search + AI KR
I Model-based approach to autonomous behavior.
I Languages: STRIP and PDDL.
I Heuristic extraction by relaxing the representation.
I Delete-relaxation heuristic: h+

I Approximations: hadd, hmax, hFF.
I Planning graphs.

3 FOND Planning: Non-determinism
I Non-deterministic state models (no probabilities!)
I PDDL with one-of effects + Policies.
I Solution concepts: weak, strong, strong-cyclic.
I Fairness assumption on environment.
I Computing policies.
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AI Planning and Control Synthesis in SE

• What if we want to plan for more complex goals?
à Elevator controller: every passenger floor
requests needs to be eventually fulfilled, but never
have more than 10 passengers on board.

• Event-driven systems: some events cannot be
planned/controlled (e.g., user aborts transaction)

• Infinite behavior: continuous operation, never
stop.
à What are the goals if we never finish? Infinite
games vs. finite games

• Compositional planning/synthesis: software
components described separately
à Plan on different PDDLs and the combine.
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LaFHIS - Laboratory on Fundamentals and Tools for Software Engineering
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https://lafhis.dc.uba.ar
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Contact sebastian.sardina@rmit.edu.au - https://ssardina.github.io/

Gracias!
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