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Disclaimer / Descargo

Mixed-language warning
The talk will be in Spanish, but the slides are in English.
Sometimes I’ll switch languages mid-sentence sin darme cuenta.

¿Por qué?
Soy argentino , pero vivo hace muchos años afuera .
Enseño en inglés, pienso en pseudo-español, y me expreso en Spanglish.
Básicamente, no hablo bien ninguno de los dos idiomas .
Pero tranqui, ¡igual nos vamos a entender!

Survival tips
- Don’t worry, the concepts are the same in any idioma.
- Ask if you get lost (en cualquiera de los dos idiomas).
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AI Classical and Non-deterministic Planning

This course will survey Automated Planning as a
model-based AI approach to sequential decision making,
from the classical formulation to the more general variant
with non-determinism that relates to SE formal methods.

Special thanks to (and others!):

Hector Geffner @ RWTH Aachen University Nir Lipovetzky @ Uni. of Melbourne
Course site: https://ssardina.github.io/courses/eci25/
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Course Structure: 4 parts in 5 days

• Part 1: Introduction, Motivation, and AI Search
I Introduction & Motivation: State of AI research.
I AI Search: Uninformed Methods.

• Part 2: Classical Planning: Languages
I Informed Search and Heuristics.
I The Classical Model.
I Planning languages: STRIPS and PDDL.

• Part 3: Classical Planning: Methods and Algorithms
I Complexity of Planning.
I Heuristic-based methods.
I SAT-based solvers for planning.

• Part 4: Non-deterministic Planning
I FOND Planning & solution concepts.
I Methods for FOND Planning.
I Conditional Fairness.
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Plan for the rest of today

1 About me & us

2 State of AI research

3 AI search for sequential decision making
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My CS journey started here!
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University of Toronto
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High-level Agent Languages
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Postdoctoral

Planning in BDI Systems
(Prof. Lin Padgham)
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Gracias.... totales!

R Founded in 1946 - 1956 (seventh national university created in the country).
R Structured in “Departments” (not Faculties!) 30,000+ students.

• Started Computer Science in 1993 in the Math Department - CS Dept. created in 1994!
à Graduated in 1997 (Thesis on Non-monotonic Logics).

• Tutor (“ayudate”) 1994-1997 and head tutor (“JTP”) 1997-1998.
• President of CeCom - Centro de Estudiantes de Computacion 1997-1998.
• Member of Departmental Council & University Assembly.
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En defensa de la universidad pública... UNIVERSITY THUMBS-UP
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RMIT University

What does “RMIT” stand for? What about the “R”?

• Public university.
• Founded 1887 (training institute for
workers).

• 80,000+ students.
• 3 campuses in Melbourne

I 1 campus in Vietnam.
I 1 center in Barcelona!

• Known for Art & Design, and
Architecture.

• Also very strong in Engineering,
Business and IT.

(click to see 1 min video)
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My research/work
• Did my PhD at University of Toronto, 1998-2005.

I Supervised by Hector Levesque; Winograd schema challenge

• Started at RMIT in July 2025 as postdoc; permanent academic since 2010

• Teach “foundational” CS courses:
I Maths for CS (1st year)
I Theory of Computation
I Artificial Intelligence
I Constraint Programming / Answer Set Programming

• Research areas/topics = KR ∩ Agents ∩ Planning
I Cognitive Robotics / Agent programming
I AI Planning
I Goal/intention recognition
I Behavior Composition

• Also contribute to Computational Thinking in the community (schools & centers,
Victorian Curriculum, school teachers’ professional development, etc.)
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Who are we? Your turn!

2552 6250 @ menti.com
https://www.menti.com/al89ktgno9yf
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A Bit of History: AI Programming and Problem of Generality

There was a time (60s, 70s, 80s) when AI was done mostly by programming:
1 pick up a challenging task and domain X (humor, story understanding, ...)
2 analyze/introspect/find out how task is solved
3 capture this reasoning in a program (usually knowledge base + rules)

Great ideas on programming and AI programming, but methodological problem:

6 Programs written by hand were clever but not robust or general.

6 They worked on scenarios envisioned by programmer but failed on others.

6 Difficult to understand/debug when failing: far from the actual problem/task.
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AI Winter: the 80’s

The rule+knowledge-based approach reached an impasse in the
80’s, a time also of debates and controversies:
• Good Old Fashioned AI is ‘rule application’ but
intelligence is not (J. Haugeland)

Many criticisms of mainstream AI partially valid then; less
valid now.
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AI 90’s - 2020

Formalization of AI techniques and increased use of mathematics. Recent issues of AIJ, JAIR,
AAAI or IJCAI shows papers on:

1 SAT and Constraints
2 Search and Planning
3 Probabilistic Reasoning
4 Probabilistic Planning

5 Inference in First-Order Logic
6 Machine Learning
7 Natural Language
8 Vision and Robotics
9 Multi-Agent Systems

R Areas 1 to 4 often deemed about techniques, but more accurate to regard them as models
and solvers.
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Motivation: Models and Solvers

Problem =⇒ Solver =⇒ Solution

Example

• Problem: The age of John is 3 times the age of Peter. In 10 years, it will be only 2
times. How old are John and Peter?

• Expressed as: J = 3P ; J + 10 = 2(P + 10)

• Solver: Gauss-Jordan (Variable Elimination)
• Solution: P = 10 ; J = 30

à Solver is general: deals with any problem expressed as an instance of model.
à Linear equations model is too simple; AI models more challenging.

Models good not just for solving but also for understanding problems.
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From Programs to Solvers and Learners

• Generality problem increasingly led to methodological shift in 80s-90s:
I from programs for ill-defined problems ...
I to algorithms for well-defined mathematical tasks.

• New programs, solvers and learners, have a crisp functionality, and both can be seen
as computing functions that map inputs into outputs

Input x =⇒ Function f =⇒ Output f(x)

• The algorithms are general: not tied to particular examples but to classes of models and
tasks expressed in mathematical form.
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Solvers (Reasoners)

Input x =⇒ Function f =⇒ Output f(x)

• Solvers derive output f(x) for given input x from model:
I SAT: x is a formula in CNF, f(x) = 1 if x satisfiable, else f(x) = 0.
I Classical planner: x is a planning problem P , and f(x) is plan that solves P .
I Bayesian net: x is a query over Bayes Net and f(x) is the answer.
I Constraint satisfaction, Markov decision processes, POMDPs, …

D Generality: Solvers not tailored to particular examples.

D Expressivity: Some models very expressive; e.g., POMDPs.
6 Challenges:

I Scalability; computation of f(x) is NP-hard (or more!).
I Models must be known.

R Learners are solvers too: argminw

∑
x∈D L(x, fw(x)) (Differentiable programming)
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Learners

Input x =⇒ Function fθ =⇒ Output fθ(x)

• In deep learning (DL) and deep reinforcement learning (DRL), training results (the
“model”) in function fθ(·).

• fθ(·) given by structure of neural network and adjustable parameters θ.
I In DL, input x may be an image and output fθ(x) a classification label.
I In DRL, input x may be state of game, and output fθ(x), value of state.

• Parameters θ learned by minimizing error function by stochastic gradient descent.
I In DL, error depends on inputs and target outputs in training set.
I In DRL, error depends on value of states and successor states.

D A true revolution in AI still unfolding...

6 Limitations: transparency, amounts of data, generalization, understanding
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Learners vs Solvers

Input x =⇒ Function f =⇒ Output f(x)

• Learners require experience over related problems x
but then fast!
I They compute function f from training, then apply it.

• Solvers deal with new problems x but need models,
and need to “think” hard.
I They compute f(x) for each input x from scratch; out

of the box.
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Learners and Solvers: System 1 and System 2?
Dual process accounts of the human mind assume two processes
(D. Kahneman: Thinking, Fast and Slow, 2011; K. Stanovich: The Robot’s Rebellion, 2005)

(Intuitive Mind) (Analytical Mind)

Learners? Solvers?

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 29/248

https://thedecisionlab.com/reference-guide/philosophy/system-1-and-system-2-thinking


SAT and CSPs

• SAT: determine if there is a truth assignment that satisfies a set of clauses:

(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y) ∧ (y ∨ z) ∧ ...

• Problem is NP-Complete, which in practice means worst-case behavior of SAT algorithms
is exponential in number of variables (2100 = 1030).

• Yet current SAT solvers manage to solve problems with thousands of variables and
clauses, and used widely (circuit design, verification, planning, etc).

• Constraint Satisfaction Problems (CSPs) generalize SAT by accommodating non-boolean
variables as well, and constraints that are not clauses.

• Key is efficient (poly-time) inference in every node of search tree: unit resolution,
conflict-based learning, ...
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Classical Planning Model

• Planning is the model-based approach to autonomous behavior.

• A system can be in one of many states.

• States assign values to a set of variables.

• Actions change the values of certain variables.

• Basic task: find action sequence to drive initial state into goal state:

Model World x =⇒ Planner f =⇒ Action Sequence f(x)

• Complexity: NP-hard+; i.e., exponential in number of vars in worst case.

• Planner is generic: should work on any domain no matter what variables are about.
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Why do we need such AI Planning?
Settings where greater autonomy required:
• Space Exploration: (RAX) first artificial intelligence control system to control a

spacecraft without human supervision (1998)
• Business Process Management
• First Person Shooters & Games: classical planners playing Atari Games
• Interactive Storytelling
• Network Security
• Logistics/Transportation/Manufacturing: Multi-model Transportation, forest fire

fighting, PARC printer
• Wherehouse Automation: Multi-Agent Path Finding, Post China, Amazon
• Automation of Industrial Operations (Schlumberger)
• Self Driving Cars ...

R Find out more at ICAPS in Action (right panel)
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http://mapf.info/
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https://icaps19.icaps-conference.org/
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Summary: AI and Automated Problem Solving

• A research agenda emerged in last 20 years: solvers for a range of intractable models.

• Solvers unlike other programs are general as they do not target individual problems but
families of problems (models).

• The challenge is computational: how to scale up.

• Sheer size of problem shouldn’t be impediment to meaningful solution.

• Structure of given problem must recognized and exploited.

• Lots of room for ideas but methodology empirical.

• Consistent progress:
I effective inference methods (derivation of h, conflict-learning)
I islands of tractability (treewidth methods and relaxations)
I transformations (compiling away incomplete info, extended goals, ...)
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Course Aim

• Not a full-fledge course on AI Planning; too much for us...
I Full semester courses (12+ weeks) and still not complete

• Focus is on coherent research thread that covers a lot of ground:
I Crisp and simple ideas and formulations for stating, understanding, and addressing key

problems.

• Many open problems; many opportunities for research
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System 1 and 2 Intelligence: A Key Challenge in AI

• General two-way integration of System 1 and System 2 inference in AI systems:
I Learners and solvers should inform, complement, and enhance each other.

• Yoshua Bengio’s challenges reflected in title of his IJCAI 2021 talk:
I System 2 Deep Learning: Higher-level cognition, agency, out-of-distribution generalization

and causality.

• Yann LeCun’s three challenges, AAAI 2020:
I AI must learn to represent the world.
I AI must think and plan in ways compatible with gradient-based learning.
I AI must learn hierarchical representation of action plans.
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Research Challenge: Minigrid

• Task: Pick up grey box behind you, then
go to grey key and open door

• Agent is red triangle at bottom right.
Light-grey is field of view.

• Learn controller that accepts goals and
observations, and outputs actions.

• How to get such a controller? Action
model and goal language not known, but
can do trial-and-error.
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Methodology: Bottom-Up vs. Top-Down Learning

• Deep (reinforcement) learning methods struggle in these problems,but manage to
generate meaningful behavior after millions of trials (despite so little prior knowledge).

• Yet methodology largely ad-hoc: from intuitions to architectures and experiments
using baselines; performance improvements but no crisp understanding.

Alternative: Top-Down
Alternative: complementary, top-down approach asks crisp questions like:
• What are the domain-independent languages for representing dynamics?

• What the languages for representing general reactive policies, subgoals?

• What are good solvers for those representations?

• How can representations over such languages be learned?
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AI and Social Impact
• System 2 not only necessary for AI systems; essential for people and societies.

• AI far from human-level intelligence, yet it can be used for good or ill.

• Ethical committees and AI principles good but not sufficient.

• Markets and politics play our System 1, focused on the bottom line.

• If we want good AI, we need a good and decent
society, that make use of our System 2 and cares
about truth, reason, knowledge, and the common
good.

• Take courses on Social and technological change...
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Part 1: Introduction, Motivation, and AI Search

1 Introduction

2 About me & us

3 State of AI research

4 AI Search
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Ready to go?
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AI’s favourite trick
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Part II

Classical Planning: Languages
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Part 2: Classical Planning: Languages

5 Motivation

6 State Models and Search

7 Planning Languages
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Course Web Page

https://ssardina.github.io/courses/eci25/
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Beating Kasparov is great...

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 46/248



Beating Kasparov is great . . . but how to play Mario?

• You (and your brother/sister/little nephew) are better than Deep Blue at everything -
except playing Chess.

Question-Circle Is that (artificial) ‘Intelligence’?

à How to build machines that automatically solve new problems?
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Planning: Motivation

How to develop systems or “agents”
that can make decisions on their own?
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Autonomous Behavior in AI
Key problem is to select the action to do next. This is the so-called “control problem”.

Three mainstream approaches to action selection

1 Behavior-based: Set of independent simple reactive modules.
/ Brook’s subsumption architecture (80’)

2 Programming-based: Specify control by hand
/ Agent-oriented programming (e.g., PRS, JACK, 3APL, SARL)

3 Learning-based: Learn control from experience
/ Reinforcement Learning; Evolutionary algorithms

4 Model-based: Specify problem by hand, derive control automatically
/ Automated Planning, Model Predictive Control

Note:
• Approaches not orthogonal; successes and limitations in each ...
• Different models yield different types of controllers ...
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Programming-Based Approach

Control specified by programmer, e.g.:
• If Mario finds no danger, then run...

• If danger appears and Mario is big, jump and kill ...

• ...

D Advantage: domain-knowledge easy to express.

6 Disadvantage: cannot deal with situations not anticipated by programmer.
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Learning-Based Approach

Learns a controller from experience or through simulation:
• Unsupervised (Reinforcement Learning):

I penalize Mario each time that ’dies’
I reward agent each time oponent ’dies’ and level is finished, ...

• Supervised (Classification)
I learn to classify actions into good or bad from info provided by teacher

• Evolutionary:
I from pool of possible controllers: try them out, select the ones that do best, and mutate

and recombine for a number of iterations, keeping best

D Advantage: does not require much knowledge in principle.

6 Disadvantage: in practice, hard to know which features to learn, and is slow.
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General Problem Solving

Ambition: Write one program that can solve all problems.
• Write X ∈ {“algorithms”} : for all Y ∈ {“problems”} : X “solves” Y

• What is a “problem”? What does it mean to “solve” it?

Ambition 2.0: Write one program that can solve a large class of problems.

Ambition 3.0: Write one program that can solve a large class of problems effectively.

(some new problem) ; (describe problem → use off-the-shelf solver) ; (solution
competitive with a human-made specialized program)

Beat humans at coming up with clever solution methods!

(Link: GPS started on 1959)
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Model-Based Approach / General Problem Solving

1 specify model for problem: actions, initial situation, goals, and sensors; and
2 let a solver compute controller automatically.
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Programming vs. Planning

Patrol Flight

Monster in sight

No monster

vs

Actions available:
1 Patrol:

I Preconditions: No Monster
I Effects: patrolled

2 Fight:
I Preconditions: Monster in sight
I Effects: No Monster

Goal: area patrolled
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Model-Based Approach / General Problem Solving

D Advantages

• Powerful: In some applications generality is absolutely necessary.
• Quick: Rapid prototyping. 10s lines of problem description vs. 1000s lines of C++ code.

(Language generation!)
• Flexible & Clear: Adapt/maintain the description.
• Intelligent & domain-independent: Determines automatically how to solve a complex

problem effectively!

6 Disadvantages

• Need a model: Without knowledge about Chess, you don’t beat Kasparov ...
• Computationally intractable: at leat NP-hard!

Trade-off between “automatic and general” vs. “manual work but effective”.

Model-based approach to intelligent behavior called “Planning” in AI.
Question-Circle How to make fully automatic algorithms effective?
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What is “planning”?

Patrik Haslum

“Planning is the art and practice of thinking before acting: of reviewing the courses of
action one has available and predicting their expected (and unexpected) results to be able
to choose the course of action most beneficial with respect to one’s goals.”

Belief-Desire-Intention (BDI) model of agency - (Bratman ’87)

Rational behavior arises due to the agent committing to some of its desires, and selecting
actions that achieve its intentions given its beliefs.
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Example: Classical Search Problem

• States: Card positions (position Jspades=Qhearts).
• Actions: Card moves (move Jspades Qhearts freecell4 ).
• Initial state: Start configuration.
• Goal states: All cards ‘home’.
• Solution: Card moves solving this game.
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Applications of Planning: Space
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Applications of Planning: Machine Control

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 59/248

https://jair.org/index.php/jair/article/view/10693
https://jair.org/index.php/jair/article/view/10693


Applications of Planning: Train Dispatching
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Applications of Planning: Traffic Light Control

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 61/248

https://aaai.org/papers/00391-13842-embedding-automated-planning-within-urban-traffic-management-operations/
https://aaai.org/papers/00391-13842-embedding-automated-planning-within-urban-traffic-management-operations/
https://www.scitepress.org/Papers/2022/108571/108571.pdf


Applications of Planning: UAVs and UGVs
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Applications of Planning: MAPF
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Applications of Planning: Others...
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Part 2: Classical Planning: Languages

5 Motivation

6 State Models and Search

7 Planning Languages
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State Models & Plans

State Models S = 〈S, s0, SG, Act, A, f, c〉

• finite and discrete state space S
• a known initial state s0 ∈ S
• a set SG ⊆ S of goal states
• a set Act of actions
• subsets of actions A(s) ⊆ Act applicable in each s ∈ S
• a (deterministic) transition function s′ = f(a, s), a ∈ A(s)
• positive action costs c(a, s)

Solution Plan σ: sequence of applicable actions a0, . . . , an that reaches SG

There must be states s0, . . . , sn+1 such that:
1 s0 is the initial state and sn+1 ∈ SG is a goal state; and
2 si+1 = f(ai, si), ai ∈ A(si), for i = 0, . . . , n:

A plan is optimal if it minimizes the sum of action costs
∑

i=0,n c(ai, si).
If costs are all 1, plan cost is plan length.
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Classical Planning: Assumptions

Classical planning makes several assumptions about state models (underlined):

1 Static vs Dynamic: agent is the only actor in the world.

2 Deterministic vs Stochastic: actions have deterministic effects.

3 Instantaneous vs temporal: actions happy instantaneous.

4 Fully Observable vs Partially Observable: agent knows the state of the world.

5 Discrete vs Numeric: state space is finite and discrete.
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State Models: Variations

Other types of state models obtained by relaxing restriction:
• Markov Decision Processes: state transition probabilities Pa(s

′ | s) and full obs
• Partially Observable MDPs (POMDPs): Pa(s

′ | s and sensor model Pa(o | s), o ∈ Ω
• Fully Observable Non-Det (FOND) Models: set of successor states s′ ∈ F (a, s)
• Partially Observable Non-Det (POND) Models: F (a, s) and sensor model o(s) ∈ Ω
• Conformant Models: uncertain S0 and F (a, s), and no feedback,
• Continuous Models: infinite state space; e.g., represent velocity and continous

processes like filling a bucket.
• …

– In presence of uncertainty, feedback is critical.
– Solution form depends on feedback: open loop vs closed-loop control.

Our classical state models S are the simplest: s0 known, deterministic, known
dynamics f(a, s), no feedback; solutions are action sequences (open loop).
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State Model Variations: Example

• Agent, at lower-left corner, aims to find the gold,
while avoiding falling in a pit or meeting the
wumpus.

• Positions of pits, gold, and wumpus, however, not
known, but agent can sense presence of pit or
Wumpus when at distance 1

• How to model problem?

• What’s a solution? How to find it?
By Eshika Shah - “Wumpus World in AI”
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Examples of our basic, deterministic state models

Model these problems as state models; i.e. fill the 7 bullets of definition

• Navigation: agent moves in n×m grid with some cells blocked.
• 15-puzzle: sliding tiles in empty slot to get tiles 1 to 15 ordered.
• Blocks world: arm picks “clear” blocks from table or other blocks; reach target config.
• Delivery: n packages in grid must be picked & delivered to target cell.; one at a time.
• Missionaries and Cannibals: 3 Ms + 3 Cs to cross river using boat for 2; cannibals

can’t be outnumbered in either bench at risk of being converted.
• TSP: travelling salesman problem; min-cost tour that visits each node of a graph once
• Applications: GPS, Video Games, ...; matrix multiplication algorithms that minimize #

of operations wrt standard algorithms (Deep Mind 2022; Speck et al. 2023)

à States models sometimes called also search models, problem spaces, …
à In general, S given by state variables x1, …, xN and their domains D1, …, DN .
à Number of states |S| bounded by cross-product |D1| × |D2| × · · · × |Dn|; not all states

reachable with actions from s0.
à Model adequate if (opt) solutions to model represent (opt) solutions to problem.
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Examples: Navigation

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: agent locations s = (x, y); bottom left is (0, 0)

2 s0: initial location (x0, y0) = (0, 0)
3 SG: set of target locations
4 Act: up, down, right, left
5 A(s) includes up if cell (x, y + 1) for s = (x, y) is

traversable; it includes left if …
6 s′ = f(up, s) if s′ = (x, y + 1) and s = (x, y), …
7 c(a, s) = 1

Single state variable, x1, representing agent location with
n×m values (x, y) in D1.

• Agent moves in n×m grid.
• Some cells blocked.
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Example: 15-puzzle

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: a 16-tuple of unique values 0, . . . , 15 (0 is “blank”).
2 s0: (15, 2, 1, 12, 8, . . .); entry l at pos. t encodes loc(t) = l
3 SG: singleton state (1, 2, 3, 4, 5, . . . , 0)
4 Act: up, down, right, left (moving the “blank”)
5 A(s) includes up if location above blank in s, loc(0), in

board
6 s′ = f(up, s) is s′ is like s but with positions of blank and

tile above blank, swapped; similar for down, left, …
7 c(a, s) = 1

Reach ordered configuration
(1,2,3,4,..)

Can move the “blank” tile
up, down, left, right.

• The state variables xt are loc(t), t = 0, . . . , 16; domain Dt = {0, . . . , 15}
Question-Circle |S| not |D0| × |D1| × · · · × |D15| but 16! (16 Factorial).Why?
Question-Circle Alternative state model?
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Example: (Oh no it’s) The Blocksworld

Initial State

E A B C

D

Goal

A

C

E

D

B

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?
What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: assigns location to each block b: loc(b) can be another block, table, gripper.
2 s0: given initial state such that loc(A) = loc(B) = loc(C) = table; loc(D) = C.
3 SG: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
4 Act: pick block b, place block being held onto block b or table
5 A(s) includes pick(B) if loc(x) 6= B and loc(x) 6= gripper for all blocks x 6= B
6 s′ = f(pickup(x), s) is like s but with loc(x) set to gripper.
7 c(a, s) = 1

Question-Circle How many states? Not all assignments loc(b) = v reachable; state invariants (which?)
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Example: Delivery/Driverlog

Agent must move and pick packages spread in an n×m grid, and take them one by one, to
the target cells.

What is the state model S = 〈S, s0, SG, Act, A, f, c〉?

1 s ∈ S: location of agent and packages; loc(a), loc(pkg)
2 s0: given
3 SG: loc(pkg) = target for all packages pkg
4 Act: pick(pkg), drop(pkg), moves up, down, left, right
5 A(s) includes pick(pkg) if loc(pkg) = loc(a), and agent hand empty, …
6 s′ = f(pick(pkg), s) is like s but loc(pkg) changes to agent, …
7 c(a, s) = 1

Question-Circle Number of states is exponential, but exponential on what?
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Example: River crossing puzzle

A farmer needs to cross a river with a goat, a wolf, and
a cabbage. His boat can only carry one item at a time.
The goat cannot be left alone with the cabbage (the
goat will eat the cabbage!). The goat cannot be left
alone with the wolf (the wolf will eat the goat!)

Model problem as a state model S = 〈S, s0, SG, Act, A, f, c〉.

• s ∈ S: contains xl, xr ∈ {0, 1}, for x ∈ {cabbage, goat, boat, wolf}
• s0, SG, Act, …

* Constraint that “cabbage should not be left alone with the goat” is not a state invariant
(true no matter what actions are taken); but a constraint to be enforced!

Question-Circle What about make A(s) empty if s does not satisfy the constraint (making s a dead-end)?
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Computation: How to solve (deterministic) state models?

• State model S defines directed graph G(S) with nodes n that represent states
s = s(n), and labeled edges that represent state transitions:
I root node n0 in G(S) represents initial state s(n0) = s0

I target nodes nG represent the goal states s(n) ⊆ SG

I labeled edge n →a n′ if s(n′) = f(a, s) for a ∈ A(s), s = s(n).

• Finding a solution to state model S becomes finding a path in graph G(S)
connecting nodes representing initial states and goal states.

• While any path-finding algorithms for graphs could be used for solving state models, few
scale up to very large graphs (billions of nodes!).

Exclamation-Triangle Size of state models and graphs is exponential in the number of state variables.
I Models and graphs not given explicitly but implicitly.
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Search Algorithms for Path Finding in Directed Graphs

Blind search/Brute force algorithms
Goal plays passive role in the search.

/ e.g., Depth First Search (DFS), Breadth-first search (BrFS), Uniform Cost (Dijkstra),
Iterative Deepening (ID), Iterative Width (IW)

Informed/Heuristic Search Algorithms
Goals plays active role in the search through heuristic function h(s) that estimates cost
from s to the goal.
• Heuristic h is said admissible if h(s) ≤ h∗(s) for all s where h∗ is optimal cost from s

to goal. That is, h is an optimistic estimate, or alternatively, a lower bound over cost.

/ e.g., A*, IDA*, Hill Climbing, Best First, DFS B&B, LRTA*, …
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Basic General Search Scheme (reviwe)

Solve(G: Graph, Init: State; Goals: Set Nodes)
Open := {(Init, g:0, f:0, p:None)}; Closed := {}
WHILE Open is not empty DO
Node := *Select-Node* from Open and move it to Closed
IF Node is Goal THEN RETURN Solution
IF s(Node) is not in Closed THEN

FOR EVERY Child in *Expand-Node* Node DO // Child = (s, g, f, p)
*Add-node* Child node to Open

RETURN Fail

• Nodes n are data structures that track state s(n) + bookkeeping info.
• Bookkeeping for n includes labeled pointer to parent and accummulated cost g(n)

I g(n) = c(a, n′) + g(n′) where n′ is parent of n, a is action label

• Duplicate nodes are nodes n and n′ that represent the same state s(n) = s(n′)
I They are avoided, except in depth-first search and tree-search algorithms
I For this, newly generated node n pruned if duplicate of n′ and g(n′) ≤ g(n)
I Yet if duplicate and g(n) < g(n′), n′ pruned instead (important! why?)
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One basic schema, many different search algorithms

• Different search algorithms obtained by different choices of node to expand from
Open given by:
I Select-Node Open
I Add-Nodes New Old Open

• Why to consider different algorithms? Because different properties:
I Completeness: guaranteed to find a solution if one exists.
I Optimality: guaranteed to find an optimal solution if one exists.
I Space complexity: memory used by algorithm.
I Time complexity: time used by algorithm.
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Some instances of general search scheme

• Depth-First Search expands ‘deepest’ nodes n first
I Select-Node Open: Select First Node in Open

I Add-Nodes New Old: Puts New before Old

I Implementation: Open as a Stack (LIFO)
I Cycle checking: prune Child in New if duplicate of ancestor

• Breadth-First Search expands ‘shallowest’ nodes n first
I Select-Node Open: Selects First Node in Open

I Add-Nodes New Old: Puts New after Old

I Implementation: Open as a Queue (FIFO)
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Heuristic search and heuristic functions

• Heuristic search algorithms use two functions:
I g(n): accumulated cost from root to node n in OPEN
I h(n): estimated cost from state s(n) represented by n to goal

• Heuristic function h(n) provides the search with a sense of direction
I Quick and rough approximation of cost from s(n) to goal

• Simple but useful heuristic functions h(n):
I Navigation: Manhattan distance (ignores blocked cells)
I 15-puzzle: Sum of Manhattan distances (ignores interactions)
I Blocks: Twice number of blocks sitting on different block in goal
I Delivery: Sum of Manhattan distances, …

• A heuristic h is admissible if h(n) ≤ h∗(n) for all nodes n (states)

• Which heuristics above are admissible? Why?
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Simplest heuristic search algorithm (not too good though)

Greedy search or Hill climbing (descending) search

1 Starting with s = s0,
2 Evaluate each action a ∈ A(s) as: Q(a, s) = c(a, s) + h(s′), where s′ = f(a, s)
3 Apply action a that minimizes Q(a, s)
4 Exit if s′ is goal, else go to 1 with s := s′

Greedy search is incomplete, even if extended with cycle checking. Yet:
3 It uses constant memory (if no cycle checks); or linear memory (cycle checks)
3 It’s a “real-time” algorithm; i.e., there is notion of current state
3 There is a simple way to fix incompleteness and non-optimality (!)

I Update the heuristic function h of parent when moving to child
I Resulting algorithm is Learning Real Time A* (LRTA*)
I LRTA* generalizes nicely to MDPs! (RTDP)
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Back to the general search scheme

Best First Search expands best nodes n with min f(n) (f(n) is the evaluation function)
• Select-Node Open: Returns node n in Open with min f(n)

• Add-Nodes New Old: Performs ordered merge

• Implementation: Open as Priority Queue

• Special cases
I Uniform cost/Dijkstra: f(n) = g(n)

I A*: f(n) = g(n) + h(n)

I WA*: f(n) = g(n) +Wh(n), W ≥ 1

I Greedy Best First: f(n) = h(n) (different than greedy search)
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Memory. Properties. Consistency

• All algorithms except DFS and its variants (below) store all nodes in memory.
• When nodes expanded, children looked up in Open and Closed “lists”.
• Duplicates prevented; only cheapest “copy” kept.

I Newly generated node n pruned, if there is a node n′ in OPEN or CLOSED that represents
same state s as n such that g(n) 6< g(n′).

I Yet, n′ pruned instead if g(n) < g(n′) (“reopened” if n′ CLOSED)

A* Good Properties

3 A* is optimal, yields cheapest solutions, if h admissible.
3 A* is optimal also in following sense: no other algorithm expands less # of nodes than

A* with same heuristic function (this doesn’t mean that A* is fastest!).
3 A* expands ‘less’ # of nodes with more informed heuristic: h2 more informed that h1

if 0 < h1(s) < h2(s) ≤ h∗(s), for all s.
3 A* won’t re-open nodes if heuristic is consistent (monotonic); i.e.,

h(n) ≤ c(n, n′) + h(n′) for child n′ of n (f doesn’t decrease along any path).
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Variants of Depth-First Search (DFS)
Bounded DFS
• Like normal DFS but uses a bound B on solution cost
• Node n pruned (not added to OPEN), if g(n) > B
• Incomplete if no solution with cost < B

Iterative Deepening (ID)

• Calls Bounded DFS with bound B1 = 0 in first iteration
• Node n pruned in iteration i if g(n) > Bi

• If no solution found in iteration i, Bounded DFS called with bound Bi+1 = mink g(nk),
over nodes nk pruned in iteration i

Iterative Deepening A* (IDA*)

• Like ID but uses evaluation function f(n) = g(n) + h(n) instead of g(n)
• Node n pruned in iteration i if f(n) = g(n) + h(n) > Bi

• B0 = h(n0) and Bi+1 = mink f(nk), over nodes nk pruned in iteration i
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 85/248



Properties of Algorithms

• Completeness: whether guaranteed to find solution
• Optimality: whether solution guaranteed optimal
• Time Complexity: how time increases with size
• Space Complexity: how space increases with size

DFS BrFS ID A* HC IDA* B&B
Complete Yes* Yes Yes Yes No Yes Yes
Optimal No Yes∗ Yes Yes No Yes Yes
Time bD bd bd bd ∞ bd bD

Space b · d bd b · d bd b b · d b · d

– Parameters: d is optimal solution depth; b is branching factor; D >> d
– BrFS optimal when costs are uniform; DFS complete with cyclic checking
– A*/IDA* optimal when h is admissible; h ≤ h∗

– B&B refers to Depth-first search Branch-and-Bound …
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Practical Issues: Search in Large Spaces

1 Exponential-memory algorithms like A* not feasible in very large spaces.

2 Time and memory requirements can be lowered significantly by multiplying heuristic
term h(n) by a constant W > 1 (WA* – Weighted A*).

I Solutions no longer optimal but at most W times from optimal (if h admissible).

3 For very large spaces, only feasible optimal algorithms are linear-memory algorithms
such as IDA* and B&B.

4 Optimal solutions have been reported to problems with huge state spaces such
24-puzzle, Rubik’s cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 1020, using IDA* and
pattern-database heuristics.

5 Recent developments combine deep reinforcement learning with search: learn
value/heuristic functions, learn policies, learn general policies, …

6 Resulting solutions not necessarily optimal though (or not easy to prove so).
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Learning Real Time A* (LRTA*)

• LRTA* is a very interesting real-time search algorithm (Korf 90)
• It’s like a hill-descending or greedy search, but it updates the heuristic V as it moves,

starting with V = h.

1 Evaluate each action a in s as: Q(a, s) = c(a, s) + V (s′)
2 Apply action a that minimizes Q(a, s)
3 Update V (s) to Q(a, s)
4 Exit if s′ is goal, else go to 1 with s := s′

• Two remarkable properties
I Each trial of LRTA gets eventually to the goal if space connected
I Repeated trials eventually get to the goal optimally, if h admissible!

• Generalizes well to stochastic actions (MDPs): RTDP

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 88/248



Iterative Width: IW

• IW(k) and IW are exploration algorithms (no heuristic h) that make use of the state
structure as given by set of Boolean state features F = {f1, . . . , fN}
I IW(1) is just breadth-first search that prunes states s that don’t make a feature fi true

for first time in the search
I IW(k) is IW(1) but over set F k made up of conjunctions of k features from F

I IW(k) expands up to Nk nodes and runs in polytime exp(2k)
I IW runs IW(1), IW(2), …, IW(k) sequentially until problem solved …

• IW is blind like DFS, BrFS, and ID but enumerates state space differently

• Many domains with exponential state space provably solved in polynomial time by
IW when using “natural” features
I Goals like on(b1, b2) in Blocks solvable by IW(2) if F captures locations and clear status of

blocks (Lipovetzky and G. 2012)
I Idea, width-based search, used in state-of-the-art classical planning algorithms
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Heuristics: where they come from?

General idea for obtaining heuristics
Heuristic functions obtained as optimal cost functions of relaxed problems.
• Routing Finding: Manhattan distance or straight line.
• N-puzzle: # misplaced tiles or sum of Manhattan distances.
• Travelling Salesman Problem: Spanning Tree.

But:
1 how to get and solve suitable relaxations?
2 how to get heuristics automatically?

This is where (classical) planning comes to the rescue!
• state models S = 〈S, s0, SG, Act, A, f, c〉 expressed in compact form by means of

planning languages
.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 90/248



Heuristics: where they come from?

General idea for obtaining heuristics
Heuristic functions obtained as optimal cost functions of relaxed problems.
• Routing Finding: Manhattan distance or straight line.
• N-puzzle: # misplaced tiles or sum of Manhattan distances.
• Travelling Salesman Problem: Spanning Tree.

But:
1 how to get and solve suitable relaxations?
2 how to get heuristics automatically?

This is where (classical) planning comes to the rescue!
• state models S = 〈S, s0, SG, Act, A, f, c〉 expressed in compact form by means of

planning languages
.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 90/248



Heuristics: where they come from?

General idea for obtaining heuristics
Heuristic functions obtained as optimal cost functions of relaxed problems.
• Routing Finding: Manhattan distance or straight line.
• N-puzzle: # misplaced tiles or sum of Manhattan distances.
• Travelling Salesman Problem: Spanning Tree.

But:
1 how to get and solve suitable relaxations?
2 how to get heuristics automatically?

This is where (classical) planning comes to the rescue!
• state models S = 〈S, s0, SG, Act, A, f, c〉 expressed in compact form by means of

planning languages
.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 90/248



Heuristics: where they come from?

General idea for obtaining heuristics
Heuristic functions obtained as optimal cost functions of relaxed problems.
• Routing Finding: Manhattan distance or straight line.
• N-puzzle: # misplaced tiles or sum of Manhattan distances.
• Travelling Salesman Problem: Spanning Tree.

But:
1 how to get and solve suitable relaxations?
2 how to get heuristics automatically?

This is where (classical) planning comes to the rescue!
• state models S = 〈S, s0, SG, Act, A, f, c〉 expressed in compact form by means of

planning languages
.

AI Planning = Search
+ KR

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 90/248



Part 2: Classical Planning: Languages

5 Motivation

6 State Models and Search

7 Planning Languages
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Planning

• Planning is one of the oldest areas in AI; many ideas have been tried.
I A bit of history: first AI planners from late 50s: GPS (Simon and Newell)

• A planner is a general solver that accepts a problem description of a dynamic system
and computes a solution plan.

Problem =⇒ Planner =⇒ Plan
• Problem description encodes state model in a compact (and accessible) form.

• Planning Languages for encoding state models based on fragment of FOL
I Make room for objects and relations: STRIPS, ADL, PDDL, …

• Classical planning is “vanilla” planning:
I Known initial state and deterministic actions; discrete time, no other changes.

• Other planning models relax these assumptions:
I Incomplete information on the state; non-deterministic actions; multi-agent, etc.
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State Model for Classical AI Planning

State model underlying classical planning: S = 〈S, s0, SG, Act, A, f, c〉 where:
• S is finite and discrete state space
• s0 is known initial state s0 ∈ S
• SG is subset of goal states, SG ⊆ S
• Act is finite set of actions
• A(s) is subset of actions applicable in each s ∈ S, A(s) ⊆ Act
• f is a deterministic transition function; successors s′ = f(a, s), a ∈ A(s)
• c is a positive action cost function; c(a, s) > 0

A solution or plan is a sequence of applicable actions a0, . . . , an that maps s0 into SG; i.e.
there is a state sequence s0, . . . , sn+1 such that ai ∈ A(si), si+1 = f(ai, si), and sn+1 ∈ SG,
i = 0, . . . , n.
A plan is optimal if it minimizes sum of action costs

∑
i=0,n c(ai, si)
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Basic Language for Classical Planning: STRIPS

• A (grounded) planning problem in STRIPS is a
tuple P = 〈F,O, I,G〉:
I F stands for set of all atoms (boolean variables)
I O stands for set of all operators (or actions)
I I ⊆ F stands for initial situation
I G ⊆ F stands for goal situation

• Actions or operators o ∈ O represented by:
I the Add list Add(o) ⊆ F : atoms that become true
I the Delete list Del(o) ⊆ F : atoms that stop being

true (i.e., become false)
I the Precondition list Pre(o) ⊆ F : atoms that must

be true for action to apply/execute Stanford Research Institute
Problem Solver
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STRIPS for SRI Shakey (1966-1972)

Check this video for a demo
of Shakey’s capabilities.

Shakey was inducted into Carnegie Mellon University’s Robot Hall of
Fame in 2004 alongside such notables as ASIMO and C-3PO.
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From Language to Models

S(P ): state model of planning problem P

Problem P = 〈F,O, I,G〉 determines/induces model S(P ) = 〈S, s0, SG, Act, A, f, c〉:
1 the states s ∈ S are collections of atoms from F (what is |S|?)
2 the initial state s0 is I
3 the set SG of goal states s are those that G ⊆ s
4 the set of actions Act is Act = O,
5 the actions a in A(s) are those such that Pre(a) ⊆ s
6 the transition function f is such that s′ = f(a, s) = (s \ Del(a)) ∪ Add(a)
7 action costs c(a, s) are all 1

Note:
• (Optimal) Solution of P is (optimal) solution of S(P )
• Language extensions often convenient (e.g., negation and conditional effects)

I some required for describing richer models (costs, probabilities, duration, …).
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Example: Simple Problem in STRIPS

Problem P = 〈F, I,O,G〉 where:
• F = {p, q, r}
• I = {p}
• G = {q, r}
• O has two actions a and b such that:

I Pre(a) = {p} , Add(a) = {q}, Del(a) = {}
I Pre(b) = {q} , Add(b) = {r}, Del(b) = {q}

Question-Circle Questions

1 How many states?
2 What is S(P )?
3 How many states are reachable from the initial state?
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(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().

• Initial state:
{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.

• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)

Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 98/248

https://tinyurl.com/yq37znq9


(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.

• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)

Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 98/248

https://tinyurl.com/yq37znq9


(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.
• Goal: {on(E,C), on(C,A), on(B,D)}.

• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)

Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 98/248

https://tinyurl.com/yq37znq9


(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.
• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)

Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 98/248

https://tinyurl.com/yq37znq9


(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.
• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)

Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 98/248

https://tinyurl.com/yq37znq9


(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.
• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)
Pre: {armEmpty(), clear(x), onTable(x)}

Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 98/248

https://tinyurl.com/yq37znq9


(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.
• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)
Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}

Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 98/248

https://tinyurl.com/yq37znq9


(Oh no it’s) The Blocksworld (again!)

Initial State

E A B C

D

Goal

A

C

E

D

B

• Propositions: on(x, y), onTable(x), clear(x), holding(x), armEmpty().
• Initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty()}.
• Goal: {on(E,C), on(C,A), on(B,D)}.
• Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

pickup(x)? - (pickup block from table)
Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
Del {armEmpty(), clear(x), onTable(x)}

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 98/248

https://tinyurl.com/yq37znq9


(Oh no it’s) The Blocksworld (operators)
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Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D)}

Action Precondition Add Delete

pickup(x) {armEmpty(), clear(x), onTable(x)} {holding(x)} {armEmpty(), clear(x), onTable(x)}

putdown(x)

{holding(x)} {armEmpty(), clear(x), onTable(x)} {holding(x)}

unstack(x, y)

{armEmpty(x), clear(x), on(x, y)} {holding(x), clear(x)} {armEmpty(), on(x, y), clear(x)}

stack(x, y)

{holding(x), clear(y)} {on(x, y), armEmpty(), clear(x)} {holding(x), clear(y)}

Question-Circle What is a successful plan for the above problem?
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(Oh no it’s) The Blocksworld (plans)
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(Oh no it’s) The Blocksworld (fixed!)

Initial State

E A B C

D

Goal

A

C

E

D

B

Propositions:
on(x, y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B,D), onTable(A), onTable(D)}

Question-Circle What is a successful plan for the above problem?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(B), stack(B,D), pickup(E), stack(E,C)D

Question-Circle What about this plan?

unstack(D,C), putdown(D), pickup(C), stack(C,A), pickup(E),
stack(E,C), pickup(D), stack(D,E), pickup(B), stack(B,D)

6

Initial State

E A B C

D

Goal

A

C

E

D

B

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 101/248



How to “write” STRIPS planning problems?
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PDDL: A Standard Syntax for Classical Planning Problems

• PDDL stands for Planning Domain Description Language

• Developed for International Planning Competetion (IPC); evolving since 1998.

• PDDL specifies syntax for problems P = 〈F, I,O,G〉 supporting STRIPS, variables,
types, and much more...

Problem in PDDL =⇒ Planner =⇒ Plan

• Problems in PDDL specified in two parts:
1 Domain: general info on the system (e.g., features, actions).
2 Instance: specifics of a problem (e.g., exact blocks).

• Many problem instances for the same domain.

• In IPC, planners are evaluated over unseen problems encoded in PDDL.
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PDDL Quick Facts

PDDL is not a propositional language:
• Representation is lifted: using object
variables to be instantiated from a finite
set of objects. (Similar to predicate logic)

• Predicates to be instantiated with objects.
/ at(?p, ?r): package ?p is at room ?r

• Action schemas parameterized by objects.
/ pickup(?x): pickup block ?x

A PDDL planning task comes in two parts:
1 Domain: predicates, operators, types.
2 Problem: objects, initial state, goal

condition.
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Example: Blocks World Domain in STRIPS (PDDL Syntax)

(define (domain blocks)
(:requirements :strips)
(:action pick_up

:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty)) (holding ?x)))

(:action put_down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x) (handempty) (on ?x ?y)))

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (clear ?y) (holding ?x) (not (on ?x ?y))

(not (clear ?x)) (not (handempty))))
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An instance of blocks world in PDDL

Initial State

E A B C

D

Goal

A

C

E

D

B

(define (problem blocks-example)
(:domain blocks)
(:objects A B C D E)
(:init (clear E) (clear A) (clear B) (clear D) (handempty)

(ontable E) (ontable A) (ontable B) (ontable C) (on D C))
(:goal (and (on C A) (on E C) (on B D))))

or better:
(define (problem blocks-example)

(:domain blocks)
(:objects A B C D E)
(:init (clear E) (clear A) (clear B) (clear D) (handempty)

(ontable E) (ontable A) (ontable B) (ontable C) (on D C))
(:goal (and (on C A) (on E C) (on B D) (ontable A) (ontable D))))
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Example: 8-Puzzle in PDDL
(define (domain tile)

(:requirements :strips :typing :equality)
(:types tile position)
(:constants blank - tile)
(:predicates (at ?t - tile ?x - position ?y - position)

(inc ?p - position ?pp - position)
(dec ?p - position ?pp - position))

(:action move-up
:parameters (?t - tile ?px - position ?py - position ?bx - position ?by - position)
:precondition (and (= ?px ?bx) (dec ?by ?py) (not (= ?t blank)) ...)
:effect (and (not (at blank ?bx ?by)) (not (at ?t ?px ?py))

(at blank ?px ?py) (at ?t ?bx ?by)))
(:action move-down

:parameters ... )
(:action move-left

:parameters ... )
...

(define (problem eight_tile)
(:domain tile)
(:objects t1 t2 t3 t4 t5 t6 t7 t8 - tile p1 p2 p3 - position)
(:init (inc p1 p2) (inc p2 p3) (dec p3 p2) (dec p2 p1)

(at blank p1 p1) (at t1 p2 p1) (at t2 p3 p1) (at t3 p1 p2) ..)
(:goal (and (at t8 p1 p1) (at t7 p2 p1) (at t6 p3 p1) ..)))
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Example: 2-Gripper Problem in PDDL
An autonomous robot moves picks/drops the balls in two rooms with its arms. Check post.
(define (domain gripper)

(:requirements :typing)
(:types room ball gripper)
(:constants left right - gripper)
(:predicates (at-robot ?r - room)(at ?b - ball ?r - room)(free ?g - gripper)

(carry ?o - ball ?g - gripper))
(:action move

:parameters (?from ?to - room)
:precondition (at-robot ?from)
:effect (and (at-robot ?to) (not (at-robot ?from))))

(:action pick
:parameters (?obj - ball ?room - room ?gripper - gripper)
:precondition (and (at ?obj ?room) (at-robot ?room) (free ?gripper))
:effect (and (carry ?obj ?gripper) (not (at ?obj ?room)) (not (free ?gripper))))

(:action drop
:parameters (?obj - ball ?room - room ?gripper - gripper)
:precondition (and (carry ?obj ?gripper) (at-robot ?room))
:effect (and (at ?obj ?room) (free ?gripper) (not (carry ?obj ?gripper)))))

(define (problem gripper2)
(:domain gripper)
(:objects roomA roomB - room Ball1 Ball2 - ball)
(:init (at-robot roomA) (free left) (free right) (at Ball1 roomA)(at Ball2 roomA))
(:goal (and (at Ball1 roomB) (at Ball2 roomB))))
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Example: Visitall Domain in PDDL
(define (domain grid-visit-all) ;;; Visit all cells in a grid

(:requirements :strips)
(:predicates (connected ?x ?y) (at-robot ?x) (visited ?x))

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at-robot ?curpos) (connected ?curpos ?nextpos))
:effect (and (at-robot ?nextpos) (not (at-robot ?curpos)) (visited ?nextpos))))

(define (problem grid -2)
(:domain grid-visit-all)
(:objects loc-x0-y0 loc-x0-y1 loc-x1-y0 loc-x1-y1)
(:init (at-robot loc-x0-y0) (visited loc-x0-y0) (connected loc-x0-y0 loc-x1-y0)

(connected loc-x0-y0 loc-x0-y1) (connected loc-x0-y1 loc-x0-y0)
(connected loc-x0-y1 loc-x1-y1) (connected loc-x1-y0 loc-x1-y1)
(connected loc-x1-y0 loc-x0-y0) (connected loc-x1-y1 loc-x1-y0)
(connected loc-x1-y1 loc-x0-y1))

(:goal (and (visited loc-x0-y0) (visited loc-x0-y1)
(visited loc-x0-y2) (visited loc-x0-y3))))

Exclamation-Triangle The grid needs to be represented in PDDL:
• one object per cell (e.g., loc-x0-y0, loc-x0-y1, etc.)
• adjacency relations between cells (e.g., (connected loc-x0-y0 loc-x1-y0))
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Example: Logistics in STRIPS PDDL
There are trucks and airplanes that can move
packages between different citites and airports.
The goal is to deliver packages to their
destinations.
More info here; planning domain here

(define (domain logistics)
(:requirements :strips :typing :equality)
(:types airport - location truck airplane - vehicle vehicle packet - thing ..)
(:predicates (loc-at ?x - location ?y - city) (at ?x - thing ?y - location) ...)
(:action load

:parameters (?x - packet ?y - vehicle ?z - location)
:precondition (and (at ?x ?z) (at ?y ?z))
:effect (and (not (at ?x ?z)) (in ?x ?y)))

(:action unload ..)
(:action drive

:parameters (?x - truck ?y - location ?z - location ?c - city)
:precondition (and (loc-at ?z ?c) (loc-at ?y ?c) (not (= ?z ?y)) (at ?x ?z))
:effect (and (not (at ?x ?z)) (at ?x ?y)))

...
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Example: Logistics in STRIPS PDDL

There are trucks and airplanes that can move
packages between different citites and airports.
The goal is to deliver packages to their
destinations.
More info here; planning domain here

(define (problem log3_2)
(:domain logistics)
(:objects packet1 packet2 ... - packet

truck1 truck2 truck3 ... - truck
city1 city2 ... - city ...)

(:init (at packet1 office1)
(at packet2 office3)
(at truck9 city7 -1) ...)

(:goal (and (at packet1 office2)
(at packet2 office2)

...)))
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Manufactoring Robot Planning in PDDL
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PDDL @ ROS Robotics

https://plansys2.github.io/
https:

//kcl-planning.github.io/ROSPlan/
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Grounding

PDDL encoding uses variables on predicates and action schemas.
• variables replaced by constants of given types – avoids repetition
• name start with ?, e.g., ?p for package, ?r for room, etc.

Process of replacing variables by constants, called “instantiation” or “grounding”.
• Grounded on(?x, ?y): on(A,A), on(A,B), on(B,A), on(A,C), …

• Grounding actions obtained by replacing variables by constants of corresponding type

• Note that instantiation above yields actions like stack(A,A) and unstack(C,C)
I To avoid such instances, one can add equality or inequality preconditions such as ?r1 6=?r2

that would avoid instantiations where variables ?r1 and ?r2 replaced by same constant.

• Specialized “grounding systems” are used.

• Grounded instance is (much) larger than original one (but easier to solve!).
Question-Circle How large? What does it depends on?
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PDDL in VSCode!
Install PDDL Extension by Jan Dolejsi (Extension Id: jan-dolejsi.pddl)
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Main Selling Points...

1 Generality.

2 Accessibility.

3 Explainable.

4 Elaboration tolerant.

5 Flexibility.

6 Autonomy.

7 Rapid prototyping.

8 Declarative.
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Blocks World tutorial in VSCODE
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Challenge: Smart Home Planning
An intelligent robot can perform basic actions in a smart house such as
turning on lights, setting room thermostats, and opening/locking doors.
Each device (e.g., lights, thermostats, doors) is associated with a specific
room, and actions are conditioned on the type and locations of the
device and robot. The domain includes predicates to represent the state of
the environment (e.g., whether a light is on or a door is open or locked) and
enables planning agents to achieve goals like preparing a room for occupancy
or securing the house before bedtime.

(define (domain smart-home)
(:requirements :strips :typing)
(:types room device)
(:predicates

(robotAt ?x)
(light-on ?r - room)
(thermostat -set ?r - room)
(door-locked ?d - device)
(door-open ?d - device)
(in-room ?d - device ?r - room)
(is-light ?d - device)
(is-thermostat ?d - device)
(is-door ?d - device))

Complete this action:
(:action open-door

:parameters (?d - device)
:precondition ...
:effect ...

)
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(door-locked ?d - device)
(door-open ?d - device)
(in-room ?d - device ?r - room)
(is-light ?d - device)
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Complete this action:
(:action toggle-light

:parameters (?d - device)
:precondition (and (is-light ?d) (in-room ?d ?r))
:effect (and (when (light-on ?r)

(not (light-on ?r)))
(when (not (light-on ?r))

(light-on ?r))))

6 Conditional effects not part of STRIPS!
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Smart-house by ChatGPT!
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The International Planning Competition (IPC)

Competition?

“Run competing planners on a set of benchmarks devised by the IPC organizers. Give awards
to the most effective planners.”

• 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018, 2019, 2020, 2023, ...

• PDDL [McDermott and others (1998); Fox and Long (2003); Hoffmann and Edelkamp (2005)]

• ≈ 40 domains, � 1000 instances, 74 (!!) planners in 2011

• Optimal track vs. satisficing track

• Various others: uncertainty, learning, . . .

http://ipc.icaps-conference.org/
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PDDL beyond STRIPS

PDDL can express significantly more than what STRIPS
can model, including:

1 Conditional effects (ADL)
2 Universal quantification
3 Typed variables
4 Functions
5 Durative actions
6 Numeric fluents
7 Temporal planning
8 Planning with preferences
9 Axioms (derived predicates)
10 Continous processes PDDL+
11 Non-deterministic actions! later…
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First PDDL @ IPC 1998
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PDDL 2.1 @ IPC 2002

In the 2002 Competition, planners were
set the challenge of considering more
complicated domains and problems which
feature both temporal and numeric
considerations (scheduling and resources).
As a result, additions the language were
necessary to facilitate modelling time and
numbers:

• Level 1: STRIPS fragment.
• Level 2: numeric fluents, functions.
• Level 3: durative actions.
• Level 4: continuous effects/changes.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 122/248

https://jair.org/index.php/jair/article/view/10352/24759
https://jair.org/index.php/jair/article/view/10352/24759


PDDL+ for Continous Processes and Events
Related to Hybrid Automata!

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 123/248

https://planning.wiki/_citedpapers/pddl1998.pdf


Planning Wiki

https://planning.wiki/
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PDDL beyond STRIPS

PDDL Version Year Features
PDDL 1.0 1998 STRIPS, typing
PDDL 2.1 2003 Numeric fluents, durative actions, functions
PDDL 2.2 2004 Derived predicates, timed initial literals
PDDL 3.0 2005 Trajectory constraints, preferences
PDDL 3.1 2008 Functional fluents

PDDL+ 2006 Continuous processes/events (HAs)
PPDDL 2004 Probabilistic effects
FOND-PDDL 2006 Like PPDDL but also non-deterministic effects

Table: PDDL versions and their main features.
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Part III

Classical Planning: Methods
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Part 3: Classical Planning: Methods

8 Complexity of Planning

9 Planning as heuristic search
Relaxations
Delete-relaxation h+

From h+ to hmax, hadd and hFF

State of the art classical planners

10 Planning as SAT
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Algorithmic Problems in Planning

Satisficing Planning
Input: A planning task P = 〈F,O, I,G〉.
Output: A plan for P , or ‘unsolvable’ if no plan for P exists.

Optimal Planning
Input: A planning task P = 〈F,O, I,G〉.
Output: An optimal plan for P , or ‘unsolvable’ if no plan for P exists.

Observations:
• The successful techniques for either one of these are almost disjoint!
• Satisficing planning is much more effective in practice.
• Programs solving these problems are called (optimal) planners, planning systems, or

planning tools.
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Decision Problems in Planning

PlanEx: Satisficing Planning
The problem of deciding, given a planning task P , whether or not there exists a plan for P .

PlanLen: Optimal Planning
The problem of deciding, given a planning task P and an integer B (bound), whether or not
there exists a plan for P of length at most B.
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Review of Complexity: P, NP and PSPACE

Turing Machine (TM)
Works on a tape consisting of tape cells, across which its R/W head moves. The machine has
internal states. There are transition rules specifying, given the current cell content and
internal state, what the subsequent internal state will be, and whether the R/W head moves
left or right or remains where it is. Some internal states are accepting (‘yes’; else ‘no’).

Thre Complexity Classes for Decision Problems

1 P: Decision problems for which there exists a deterministic TM that runs in time
polynomial (in the size of its input).

2 NP: Decision problems for which there exists a non-deterministic TM that runs in time
polynomial. Accepts if at least one of the possible runs accepts.

3 PSPACE: Decision problems for which there exists a deterministic TM that runs in
space polynomial in the size of its input.
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Planning is hard!
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Domain-Specific: PlanEx vs. PlanLen

• In general, both have the same complexity
(PSPACE-complete).

• Within particular applications, bounded length plan
existence (i.e., optimal planning) is often harder than
plan existence.

• This happens in many IPC benchmark domains.

• PlanLen is NP-complete while PlanEx is in P.
I For example: Blocksworld and Logistics.

Exclamation-Triangle In practice, optimal planning is (almost) never “easy”.
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D

Goal

A
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E

D

B
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The Blocksworld is Hard?
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The Blocksworld is Hard!
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So, why all the fuss?

• n blocks, 1 hand.
• A single action either takes a block with the hand or puts a block
we’re holding onto some other block/the table.

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353

blocks states
9 4596553

10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921

State spaces may be huge. In particular, the state space is typically exponentially large in the
size of the factored (compact) specification of the problem.

In other words: Search problems typically are computationally hard (e.g., optimal
Blocksworld solving is NP-complete).
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Computation: how to solve STRIPS planning problems?

Key Key idea
Exploit two roles of language:

1 specification: concise and accessible model description.
2 computation: reveal useful heuristic information (structure).

Two traditional approaches: search vs. decomposition
1 explicit search of the state model S(P ) direct but not effective until “recently”.
2 near decomposition of the planning problem thought a better idea.
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Computational Approaches to Classical Planning

• General Problem Solver (GPS) and Strips (50’s-70’s): mean-ends analysis,
decomposition, regression, …

• Partial Order (POCL) Planning (80’s): work on any open subgoal, resolve threats;
UCPOP 1992.

• Graphplan (1995 – 2000): build graph containing all possible parallel plans up to
certain length; then extract plan by searching the graph backward from Goal.

• SATPlan (1996 – …): map planning problem given horizon into SAT problem; use
state-of-the-art SAT solver.

• Heuristic Search Planning (1996 – …): search state space S(P ) with heuristic function
h extracted from problem P .

• Model Checking Planning (1998 – …): search state space S(P ) with ‘symbolic’
Breadth first search where sets of states represented by formulas implemented by BDDs …
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State of the Art in Classical Planning

• Significant progress since Graphplan.

• Empirical methodology:
1 standard PDDL language
2 planners and benchmarks available; competitions
3 focus on performance and scalability

• Large problems solved (non-optimally).

• Different formulations and ideas
1 Planning as Heuristic Search.
2 Planning as SAT.
3 Other: Local Search (LPG), Monte-Carlo Search (Arvand), …

We’ll focus on 1 mainly, and partially on 2.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 138/248



Part 3: Classical Planning: Methods

8 Complexity of Planning

9 Planning as heuristic search
Relaxations
Delete-relaxation h+

From h+ to hmax, hadd and hFF

State of the art classical planners

10 Planning as SAT
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Computation: How to Solve Classical Planning Problems?

• Planning is one of the oldest areas in AI; many ideas have been tried
I A bit of history: first AI planners from late 50s: GPS (Simon and Newell)

Problem =⇒ Planner =⇒ Plan

• We focus on two of the ideas that scale up best computationally:
1 Planning as Heuristic Search.
2 Planning as SAT.

• These methods are able to solve problems over huge state spaces.

Exclamation-circle But some domains are inherently hard, and for them, general, domain-independent
planners unlikely to approach specialized methods.
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Planning as Heuristic Search

• STRIPS P = 〈F,O, I,G〉 encodes model S(P ) = 〈S, s0, SG, Act, A, f, c〉

• Finding a plan in S(P ) reduces to finding a path/reachability in a graph where:
I Nodes represent the states s in the model
I Edges (s, s′) capture corresponding transitions s′ = f(a, s), a ∈ A(s)

• State models and graphs given implicitly by P .

• Their sizes are exponential in number of atoms in F .

It’s critical to use heuristic functions to guide the search.

If the user had to supply the heuristic function by hand, then we would lose some of the
selling points: generality + autonomy + flexibility + rapid prototyping.

Question-Circle Question
How to get heuristic functions automatically from P itself?
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Heuristics: where they come from?

General idea for obtaining heuristics
Heuristic functions obtained as optimal cost functions of relaxed problems.
• Routing Finding: Manhattan distance or straight line.
• N-puzzle: # misplaced tiles or sum of Manhattan distances.
• Travelling Salesman Problem: Spanning Tree.

Why is navigation hard?

Because of obstacles!

So, suppose you can flight or
walk through walls!
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How to Relax Informally

Relaxation means to simplify the problem, and take the solution to the simpler
problem as the heuristic estimate for the solution to the actual problem.

• You have a problem, P ∈ P, whose perfect heuristic h∗ you wish to estimate.

• You define a simpler problem, P ′ ∈ P ′, whose perfect heuristic h′∗ can be used to
estimate h∗.

• You define a transformation, r, that simplifies instances from P into instances P ′.

• Given problem instance P ∈ P, you estimate h∗(P ) by h′∗(r(P )).

P
h∗

R+
0 ∪ {∞}

P ′
h′∗

r

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 143/248



How to Relax Informally

Relaxation means to simplify the problem, and take the solution to the simpler
problem as the heuristic estimate for the solution to the actual problem.

• You have a problem, P ∈ P, whose perfect heuristic h∗ you wish to estimate.

• You define a simpler problem, P ′ ∈ P ′, whose perfect heuristic h′∗ can be used to
estimate h∗.

• You define a transformation, r, that simplifies instances from P into instances P ′.

• Given problem instance P ∈ P, you estimate h∗(P ) by h′∗(r(P )).

P
h∗

R+
0 ∪ {∞}

P ′
h′∗

r

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 143/248



How to Relax During Search: Diagram

Using a relaxation R = (P ′, r, h′∗) during search:

Heuristic Search Solution to P

r(Ps)
r h′∗

Problem P

h(s) = h′∗(r(Ps))state s

• Πs: Π with initial state replaced by s, i.e., Π = (F,A, c, I,G) changed to (F,A, c, s,G).
à That is, the task of finding a plan for state s.

So, during search, the relaxation is used only inside the computation of the heuristic
function on each state; the relaxation does not affect anything else.
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Relaxations: Navigation

Navigation in 4-connected grid with
obstacles:

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
(not (obstacle ?nextpos)))

:effect (and (at ?nextpos)
(not (at ?curpos))))

P ′: can go through walls, drop obstacle preconditions:

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
;; drop obstacle precondition
)

:effect (and (at ?nextpos)
(not (at-robot ?curpos))))

What is h′∗ for the relaxed problem?
Manhattan Distance! (|x− goal.x|+ |y − goal.y|)

But, how do we know which predicate to drop?
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Relaxations: N-Puzzle

(:action slide
:parameters (?t ?s1 ?s2)
:precondition (and (at ?t ?s1) (blank ?s2)

(connected ?s1 ?s2))
:effect (and (at ?t ?s2) (blank ?s1)

(not (at ?t ?s1)) (not (blank ?s2))))

Proposal 1: P ′: ignore blanks; can overlap tiles

(:action slide
:parameters (?t ?s1 ?s2)
:precondition (and (at ?t ?s1) ;; drop blank

(connected ?s1 ?s2))
:effect (and (at ?t ?s2)

(not (at ?t ?s1))))

h′∗: Manhattan Distance!

In the example: h′∗ = 2 + 0 + 5 + · · ·+ 2 + 0 + 5
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Relaxations: N-Puzzle
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(:action slide
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(not (at ?t ?s1))))

h′∗: Misplaced tiles

In the example: h′∗ = 15

Again, how do we know which predicate to drop?
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Goal Counting Relaxation
Let’s act as if every action is possible and no ’undos’:

1 Drop all preconditions — all is executable.
2 Drop all negative effects — no undos.

• Problem P : All STRIPS planning tasks.
• Simpler problem P ′: All STRIPS planning tasks with empty preconditions and deletes.
• Perfect heuristic h′∗ for P ′: Optimal plan cost wrt P ′.
• Transformation r: Drop the preconditions and deletes.

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (at ?curpos)

(connected ?curpos ?nextpos)
(not (obstacle ?nextpos)))

:effect (and (at ?nextpos) (not (at ?curpos))
(visited ?nextpos)))

(:goal (and (visited loc-x0-y0)
(visited loc-x0-y1)
(visited loc-x0-y3 )))

Relaxation P ′:
(:action move

:parameters (?curpos ?nextpos)
:precondition ()
:effect (and (at-robot ?nextpos)

(visited ?nextpos)))

What is h′∗ for P ′?
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Precondition + Delete Relaxation in Blocksworld

E A

B

C

D

(:action put_down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (clear ?y) (holding ?x) (not (on ?x ?y))

(not (clear ?x)) (not (handempty))))

(:goal (and (holding d) (clear b)))

Relaxation P ′:
(:action put_down

:parameters (?x)
:precondition ()
:effect (and (clear ?x) (handempty) (ontable ?x)))

(:action unstack
:parameters (?x ?y)
:precondition ()
:effect (and (clear ?y) (holding ?x)))

Plan pickup(d), putdown(b) works for P ′.
Question-Circle Is then h′∗ = 2? No! h′∗ = 1! Optimal plan is unstack(d, b)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 149/248



Precondition + Delete Relaxation in Blocksworld

E A

B

C

D

(:action put_down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (clear ?y) (holding ?x) (not (on ?x ?y))

(not (clear ?x)) (not (handempty))))

(:goal (and (holding d) (clear b)))

Relaxation P ′:
(:action put_down

:parameters (?x)
:precondition ()
:effect (and (clear ?x) (handempty) (ontable ?x)))

(:action unstack
:parameters (?x ?y)
:precondition ()
:effect (and (clear ?y) (holding ?x)))

Plan pickup(d), putdown(b) works for P ′.
Question-Circle Is then h′∗ = 2?

No! h′∗ = 1! Optimal plan is unstack(d, b)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 149/248



Precondition + Delete Relaxation in Blocksworld

E A

B

C

D

(:action put_down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (clear ?y) (holding ?x) (not (on ?x ?y))

(not (clear ?x)) (not (handempty))))

(:goal (and (holding d) (clear b)))

Relaxation P ′:
(:action put_down

:parameters (?x)
:precondition ()
:effect (and (clear ?x) (handempty) (ontable ?x)))

(:action unstack
:parameters (?x ?y)
:precondition ()
:effect (and (clear ?y) (holding ?x)))

Plan pickup(d), putdown(b) works for P ′.
Question-Circle Is then h′∗ = 2? No! h′∗ = 1! Optimal plan is unstack(d, b)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 149/248



Precondition + Delete Relaxation vs. Goal Counting

Let’s act “as if every action is possible and no ’undos”’:

1 Drop all preconditions — all is executable.
2 Drop all negative effects — no undos.

Yet:

Optimal STRIPS planning with empty preconditions and deletes is still NP-hard!
Hand-Point-Right (Reduction from MINIMUM COVER, of goal set by add lists.)

Need to approximate the perfect heuristic h′∗ for P ′.

Hence goal counting: just approximate h′∗ by h] = number-of-false-goals.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 150/248



Precondition + Delete Relaxation vs. Goal Counting

Let’s act “as if every action is possible and no ’undos”’:

1 Drop all preconditions — all is executable.
2 Drop all negative effects — no undos.

Yet:
Optimal STRIPS planning with empty preconditions and deletes is still NP-hard!

Hand-Point-Right (Reduction from MINIMUM COVER, of goal set by add lists.)

Need to approximate the perfect heuristic h′∗ for P ′.

Hence goal counting: just approximate h′∗ by h] = number-of-false-goals.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 150/248



Precondition + Delete Relaxation vs. Goal Counting

Let’s act “as if every action is possible and no ’undos”’:

1 Drop all preconditions — all is executable.
2 Drop all negative effects — no undos.

Yet:
Optimal STRIPS planning with empty preconditions and deletes is still NP-hard!

Hand-Point-Right (Reduction from MINIMUM COVER, of goal set by add lists.)

Need to approximate the perfect heuristic h′∗ for P ′.

Hence goal counting: just approximate h′∗ by h] = number-of-false-goals.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 150/248



Challenge!

Question-Circle Question
We have a robot with one gripper, two rooms A and B, and n balls to be transported from A
to B. The actions available are move, pickBall and dropBall; say
h = “number of balls not yet in room B”. Can h be derived as hR for a relaxation R?

1 No.
2 Yes, just drop the deletes.
3 Sure, every admissible h can be derived via a relaxation.
4 I’d rather relax at the beach.

1 Incorrect. We can define P ′ as the problem of computing the cardinality of a finite set,
and define r as the function that maps a state to the set of balls not yet in room B.

2 Incorrect, should drop preconditions (and deletes).
3 Yes. Given admissible h : P 7→ R+

0 ∪{∞}, we can simply define P ′ := P and take r to be
the identity function idP . In other words, R := (P, idP , h) is a relaxation with hR = h.

4 Me, too!
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Remarks

Is Goal Counting any good?
The goal-counting approximation h] = “count the number of goals currently not true” is a
very uninformative heuristic function:

1 Range of heuristic values is small (0 . . . |G|).
2 We can transform any planning task into an equivalent one where h(s) = 1 for all

non-goal states s. How?

I Replace goal by new fact g and add a new action achieving g with precondition G.

3 Ignores almost all structure: Heuristic value does not depend on the actions at all!

I Dropping preconditions is “too much”.

Let’s next see how to compute much better (more informed) heuristic functions (still
automatically from the PDDL description!).
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Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Real world: (before)
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Heuristics for Classical Planning

• Heuristics derived from relaxation where delete-lists of actions are dropped.
I That is, delete all (not ...) clauses in the each action’s :effect in the PDDL

• This simplification is called the delete-relaxation.

• Define delete-relaxation heuristic h+(s) as:

h+(s)
def
= h∗P ′(s)

where P ′ is delete-relaxation of P , P (s) is P but with s as initial state, and h∗P (s) is
optimal cost of P (s).

D Delete relaxation is admissible (i.e., optimistic):
I Applying a relaxed action can only ever make more facts true.
I That can only be good, i.e., cannot render the task unsolvable

D Keeps actions’ preconditions, and thus the causal “structure”
Question-Circle ... but what does it “mean”?
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Visiting Australia Cities with h+

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C = {Syd,Ade,Bri,Per ,Ade,Dar}.

• P : at(x) and visited(x), for x ∈ C.
• A: drive(x, y) where x 6= y have a high-way.

c(drive(x, y)) =


1 x, y ∈ {Syd,Bri}
1.5 x, y ∈ {Syd,Ade}
3.5 x, y ∈ {Ade,Per}
4 x, y ∈ {Ade,Dar}

• I = {at(Syd), visited(Syd)};
• G = {at(Syd)} ∪ {visited(x) | x ∈ C}.

Planning vs. Relaxed Planning:
• Optimal plan: drive(Syd,Bri), drive(Bri,Syd), drive(Syd,Ade), drive(Ade,Per),

drive(Per ,Ade), drive(Ade,Dar), drive(Dar ,Ade), drive(Ade,Syd).
• Optimal relaxed: drive(Syd,Bri), drive(Syd,Ade), drive(Ade,Per), drive(Ade,Dar)
• So, h∗(I) = 20 and h+(I) = 10.
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Visiting Australia Cities with h+

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C = {Syd,Ade,Bri,Per ,Ade,Dar}.

• P : at(x) and visited(x), for x ∈ C.
• A: drive(x, y) where x 6= y have a high-way.

c(drive(x, y)) =


1 x, y ∈ {Syd,Bri}
1.5 x, y ∈ {Syd,Ade}
3.5 x, y ∈ {Ade,Per}
4 x, y ∈ {Ade,Dar}

• I = {at(Syd), visited(Syd)};
• G = {at(Syd)} ∪ {visited(x) | x ∈ C}.

Planning vs. Relaxed Planning:
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• Optimal relaxed: drive(Syd,Bri), drive(Syd,Ade), drive(Ade,Per), drive(Ade,Dar)
• So, h∗(I) = 20 and h+(I) =

10.
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What does h+ give us?
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What does h+ give us?

h+(Visit Autralia) = Minimum Spanning Tree!
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Challenge!

3805 8489 @ menti.com

Question-Circle Question: What is h+ for this domain?

1 Manhattan Distance.

No, relaxed plans can’t walk through walls.

2 h∗.

Yes, optimal plan = shortest path = relaxed plan (deletes do not matter because
“shortest paths never walk back”).

3 Horizontal distance.

No, relaxed plans must move both horizontally and vertically.

4 Vertical distance.

No, relaxed plans must move both horizontally and vertically.
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h+ as a Relaxation Heuristic

P

P ′ ⊆ Pr

h∗
R+

0 ∪ {∞}

h′∗

where, for all P ∈ P:
h′∗(r(P )) ≤ h∗(P ).

For h+ = h∗ ◦ r:
• Problem P ∈ P: All STRIPS planning tasks.
• Simpler problem P ∈ P ′: All STRIPS planning tasks with empty deletes.
• Perfect heuristic h′∗ for P ′: Optimal plan cost on P ′.
• Transformation r: Drop the deletes; drop all (not ...) terms in :effects

Question-Circle Questions

1 Is this a native relaxation?

Yes!

2 Is this relaxation efficiently constructible?

Yes!

3 Is this relaxation efficiently computable?

No!
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Perfect delete-relaxation h+ is hard!

Unfortunately, definition h+(s) = h∗P ′(s) not
suitable computationally:
• Solving P ′(s) optimally as difficult as
solving P (s) optimally (NP-hard).

• Hardness proved by reduction from SAT:
“When operators are restricted to one
positive precondition and one positive
postcondition, PLANMIN remains in-
tractable.” (Bylander’94)

• Remember, heuristics need to be
computed fast!

Exclamation Yet, finding one plan for P ′(s), not necessarily optimal, is easy. Why? Next slide!
• All implemented systems using the delete relaxation approximate h+ in one or the other

way. We now look at the the most wide-spread approaches to do so...
- (not , vi, )
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Why solving P ′(s) is “easy”?

Key Idea: Delete-free STRIPS problems like P ′(s) are fully decomposable
If plan π1 achieves G1 and plan π2 achieves G2, then plan π1 · π2 achieves G1 and G2.
à So, plans πp for each atom p yield plans for any goal G (with lots of “redundancy”).

Let’s compute how many steps are needed to reach each atom p:

Procedure: Atom p reachable in k steps with support ap from state s

1 Atom p reachable in 0 steps with no action support if p ∈ s.
2 Atom p reachable in i+ 1 steps with support ap, if not reachable in i steps or less, and
preconditions pi of ap reachable in i steps or less.

• Procedure terminates in # of steps bounded by number of atoms
I ... and if p not reachable, there is no plan for p in either P ′(s) or P (s)

• Supporters ap needed to get to goal G of P yield (relaxed) plan π′(s) for P ′(s)
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Max and Additive Heuristics
For all atoms p:

h(p; s)
def
=

{
0 if p ∈ s

mina∈Add(p)[cost(a) + h(Pre(a); s)] otherwise

Observe: h(Pre(a); s) is on set of propositions — Pre(a) may contain many atoms.

The Max Heuristic hmax

For sets of atoms C, define:

h(C; s)
def
= max

r∈C
h(r; s)

Resulting heuristic function:

hmax(s)
def
= h(G; s)

• # of steps to reach all atoms in G.
• Admissible, but often too optimistic.

The Additive Heuristic hadd

For sets of atoms C, define:

h(C; s)
def
=

∑
r∈C

h(r; s)

Resulting heuristic function:

hadd(s)
def
= h(G; s)

• sum of steps to reach each atom in G.
• Not admissible, but often informative.
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Example

Problem P = 〈F, I,O,G〉 where:
• F = {pi, qi | i ∈ {0, . . . , n}}
• I = {p0, q0}
• G = {pn, qn}
• O contains actions ai and bi, for i{0, . . . , n− 1}:

I Pre(ai) = {pi}, Add(ai) = {pi+1}, Del(ai) = {pi}
I Pre(bi) = {qi}, Add(bi) = {qi+1}, Del(bi) = {qi}

Question-Circle Questions
For the initial state I:

1 What is hmax(I)?
2 What is hadd(I)?
3 What is relaxed plan obtained from hmax?
4 What is optimal cost h∗P (I)?
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Alternative Graphic Procedure to Compute Max Heuristic
Procedure builds propositional and action layers Pi and Ai ignoring deletes from state s:

P0 = {p | p ∈ s}
Ai = {a | a ∈ O,Pre(a) ⊆ Pi}

Pi+1 = Pi ∪ {p | a ∈ Ai, p ∈ Add(a)} (ignore deletes!)

Max Heuristic hmax

The max heuristic is implicitly represented in this layered graph:

hmax(s) = smallest i such that each p ∈ G is in some layer Pk, with k ≤ i
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Planning Graph to Compute hmax

Eggs, flour, and water are needed to bake (and eat) a cake, and to make playdo, have fun,
and be happy! Goal is to be happy and feel satisfied

P0 A0 P1 A1 P2

Have(eggs)

Have(flour)

Have(water)

bake

playdo

Have(eggs)

Have(cake)

Have(flour)

Have(playdo)

Have(water)

eat(bake)

play

Have(eggs)

Have(cake)

Have(flour)

Have(playdo)

Have(water)

Satisfied

Happy

Zhmax = max{h(Happy), h(Satisfied)} = max{2, 2} = 2 (G appears first in level 2!)

h(Happy) = 1 + h(Have(playdo)) = 1 + (1 + h(Have(water))) = 1 + (1 + 0) = 2
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The Additive and Max Heuristics: So What?

Summary of typical issues in practice with hadd and hmax:

1 Both hadd and hmax can be computed reasonably quickly.
2 hmax is admissible, but is typically far too optimistic.
3 hadd is not admissible, but is typically a lot more informed than hmax.
4 But hadd may overcount by ignoring positive interactions, i.e., sub-plans shared

between sub-goals.
5 Such overcounting can result in dramatic over-estimates of h∗!!

Relaxed plans (next) is a way to reduce this kind of over-counting.
• Similar to hadd, but can account for positive interactions and are much less prone to

overcounting.
• They achieve this by adding another technology layer – relaxed plan extraction – on top

of hmax or hadd.
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Relaxed Plans and Best Supporters

Basic Idea for relaxed plans

1 First compute a best-supporter action ap for every fact p ∈ F : action that is deemed to
be the cheapest achiever of p (within the relaxation).

2 Then extract a relaxed plan from best supporters of all goal atoms.

The best-supporter can be based directly on hmax or hadd heuristics by recursively
collecting best supporters backwards from the goal, where ap is best support for p 6∈ s:

ap = argmin
a∈Add(p)

[cost(a) + h(Pre(a))]

A plan π(p; s) for p in delete-relaxation can be computed backwards as:

π(p; s)
def
=

{
0 if p ∈ s

ap ∪
⋃

q∈Pre(ap)
π(q; s) otherwise
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2 Then extract a relaxed plan from best supporters of all goal atoms.

The best-supporter can be based directly on hmax or hadd heuristics by recursively
collecting best supporters backwards from the goal, where ap is best support for p 6∈ s:

ap = argmin
a∈Add(p)

[cost(a) + h(Pre(a))]

A plan π(p; s) for p in delete-relaxation can be computed backwards as:

π(p; s)
def
=

{
0 if p ∈ s

ap ∪
⋃

q∈Pre(ap)
π(q; s) otherwise
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Relaxed Plans and hFF

The best-supporter wrt hmax (cheapest achiever of p based on hmax):

ap = argmin
a∈Add(p)

[cost(a) + hmax(Pre(a))]

A plan π(p; s) = Ok ·Ok−1 · · ·O1 for p in delete-relaxation can be computed backwards as:

π(p; s)
def
=

{
∅ if p ∈ s

{ap} ∪
⋃

q∈Pre(ap)
π(q; s) otherwise

hFF: # of different ap-supporters needed to get to G:

hFF(s) = |
⋃
p∈G

π(p; s)|

using h = hmax for the best supporters.
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Planning Graphs for Relaxed Plans
Consider three atoms p, g1, and g2, and three actions ap, ag1 , and ag2 , that make them true,
respectively. Precondition of ap is empty, but both ag1 and = ag2 require atom p to be true.
Goal is {g1, g2} and initial state I = ∅ (nothing is true).

P0 A0 P1 A1 P2

True ap p

ag1

ag2

g1

p

g2

• h∗(I) = 3 (optimal plan is ap · ag1 · ag2).

• hmax(I) = max{h(g1; I), h(g1; I)} = 2 (goal appears at level 2 - optimistic!)

• hadd(I) = h(g1; I) + h(g1; I) = 2 + 2 = 4 (pessimistic, counts ap twice!)

• hFF(I) = |〈{ap} ∪ {ag1 , ag2}〉| = 1 + 2 = 3 perfect!
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Other heuristics...

Key development in planning in the 90’s...

Relaxations • h+ (Hoffmann & Nebel, ’01)
• hmax and hadd (Bonet & Geffner, ’01)
• hFF (Hoffmann & Nebel, ’01)
• hpmax (Mirkis & Domshlak, ’07)
• hsa (Keyder & Geffner, ’08

Critical paths • hm (Haslum & Geffner, ’00) with h1 = hmax

Abstractions • PDBs (Edelkamp, ’01; Haslum et al., ’05, ’07)
• Merge & Shrink (Helmert et al., ’07,’14; Katz et al, ’12; Sievers et al., ’14)

Landmarks • Landmark count (Hoffmann et al., ’04)
• hL and hLA (Karpas & Domshlak, ’09)
• LM-cut (Helmert & Domshlak, ’10)
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Example
Problem P = 〈F, I,O,G〉 where:
• F = {pi, qi | i = 0, . . . , n}
• I = {p0, q0}
• G = {pn, qn}
• O contains actions ai and bi, i = 0, . . . , n− 1:

I Pre(ai) = {pi}, Add(ai) = {pi+1}, Del(ai) = {pi}
I Pre(bi) = {qi}, Add(bi) = {qi+1}, Del(bi) = {qi}

Question-Circle Questions
For the initial state I:

1 What is relaxed plan obtained for hFF(I)?
2 What is hFF(I)?

3 What happens if we have actions ci for i even:
I Pre(ci) = {pi, qi}, Add(ci) = {pi+1, qi+1}, Del(ci) = {pi, qi}
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Exercise
Problem P = 〈F, I,O,G〉 where:
• F = {pi, qi | i = 0, . . . , n}
• I = {p0, q0}
• G = {pn, qn}
• O contains actions ai, bi, and ci:

I Pre(ai) = {pi}, Add(ai) = {pi+1}, Del(ai) = {pi}, for i = 0, . . . , n− 1.
I Pre(bi) = {qi}, Add(bi) = {qi+1}, Del(bi) = {qi}, for i = 0, . . . , n− 1.
I Pre(ci) = {pi, qi}, Add(ci) = {pi+1, qi+1}, Del(ci) = {pi, qi}, for i = 0, . . . , n− 1 such that

i mod 2 = 0 (that is, action ci exists when i is even).

Question-Circle Questions

1 Calculate h+(I).
2 Calculate hadd(I).
3 Calculate hmax(I).
4 Calculate hFF(I). What is relaxed plan obtained for hFF(I)?
5 Calculate h∗(I).
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Example Systems
HSP [Bonet and Geffner, AI-01]

1 Search algorithm: Greedy best-first search.
2 Search control: hadd.

FF [Hoffmann and Nebel ,JAIR-01]

1 Search algorithm: Enforced hill-climbing.
2 Search control: hFF extracted from hmax supporter function; helpful actions pruning (basically expand

only those actions contained in the relaxed plan).

LAMA [Richter and Westphal, JAIR-10]

1 Search algorithm: Multiple-queue greedy best-first search.
2 Search control: hFF + a landmarks heuristic (similar to goal counting); for each, one search queue all

actions, one search queue only helpful actions.

BFWS [Lipovetzky and Geffner, AAAI-17 ]

1 Search algorithm: best-first width search.
2 Search control: novelty + variant of hFF + goal counting.
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Modern Planners: EHC Search, Helpful Actions, Landmarks

• First generation of heuristic search planners like HSP, searched the graph defined by
state model S(P ) using standard search algorithms like Greedy Best-First or WA*, and
heuristics like hadd.

• Second generation planners like FF and LAMA beyond this in two ways:
1 They exploit the structure of the heuristic and/or problem further:

I Helpful Actions: actions most relevant in relaxation.
I Landmarks: implicit problem subgoals.

2 They use novel search algorithms:
I Enforced Hill Climbing (EHC).
I Multi-Queue Best First Search.

• The result is that they can solve huge problems, very fast. Not always though...

• The delete relaxation is still used at large, specially since the wins of LAMA in the
satisficing planning tracks of IPC’08 and IPC’11.

• More generally, the relaxation principle is very generic and applicable in many contexts.
This is where all started: Planning as Heuristic Search [Bonet and Geffner, AI-01].
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Search in the FF Planner

• Heuristic in FF is hFF(s) given by size |π′(s)| of relaxed plan π′(s) for P ′(s).

• The search in FF split in two phases:
1 First phase, called EHC (Enforced Hill Climbing) is incomplete but fast:

I Starting with s = s0, EHC does a breadth-first search from s using only “helpful actions”
until a state s′ is found such that hFF(s

′) < hFF(s).
I If such a state s′ is found, the process is repeated starting with s = s′. Else, the EHC fails,

and the second phase is triggered.
2 Second phase is a Greedy Best-First search guided by hFF: complete but slow.

• Action deemed helpful in s if applicable in s and adds a goal or precondition of action in
“relaxed plan” π′(s).
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Part 3: Classical Planning: Methods

8 Complexity of Planning

9 Planning as heuristic search
Relaxations
Delete-relaxation h+

From h+ to hmax, hadd and hFF

State of the art classical planners

10 Planning as SAT
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Planning as SAT
• SAT: determine if there is a truth assignment that satisfies a set of clauses:

(x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ∧ (y ∨ z) ∧ ...

• Maps planning problem P = 〈F,O, I,G〉 with horizon n into a set of clauses C(P, n),
solved by SAT solvers.

I Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

• Formula/theory C(P, n) includes variables p0, p1, . . . , pn and a0, a1, . . . , an−1 for each
p ∈ F and a ∈ O.

I pi: atom p is true at time step i.
I ai: action a is executed/selected at time step i.

• C(P, n) satisfiable iff there is a plan of length no greater than n.

• Such a plan can be read from truth valuation that satisfies C(P, n).

• SAT-based planners like SATPLAN or Madagascar use this encoding.

I Winners of the 2004 and 2006 IPCs optimal track; 2nd in 2014 agile track; part of top
portfolio planners in 2023.
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Theory C(P, n) for Problem P = 〈F,O, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F \ I

• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ O:

I ai ⊃ pi for p ∈ Prec(a)
I ai ⊃ pi+1 for each p ∈ Add(a)
I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p, resp.:

I pi ∧
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From SAT to Answer Set Programming (ASP)

• ASP is a logic programming paradigm for knowledge representation and reasoning.
I More convenient representation than SAT: predicate logic (i.g., variables!)
I Based on stable model semantics for logic programs with negation as failure.
I Related to Constraint Programming and CSP.

• ASP encodings for planning similar to SAT encodings, but use rules instead of clauses:
{do(A, T) : action(A)} = 1 :- step(T). % exactly one action per step
:- do(A, T), prec(A, P), not holds(P, T-1). % precondition applies!

holds(P, 0) :- init(P). % define init state
holds(P, T) :- do(A, T-1), add(A, P). % add effects
holds(F, T) :- holds(F, T-1), step(T), not do(A, T-1) : del(A, F). % frame

:- goal(p), not holds(p, k). % goal at last step k

Problem instance encoded via facts action(A), prec(A,P), add(A,P), del(A,P), init(P),
goal(P), and step(T) — e.g., prec(unstack(A,B), on(A,B)).

• ASP solvers compute stable models (answer sets) that represent plans.
I Plans extracted from atoms of the form do(A,T) in the stable model.
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Blocks Worlds in ASP
Planner is a fixed ASP program:
{do(A, T) : action(A)} = 1 :- step(T). % exactly one action per step
:- do(A, T), prec(A, P), not holds(P, T-1). % precondition applies!

holds(P, 0) :- init(P). % define init state
holds(P, T) :- do(A, T-1), add(A, P). % add effects
holds(F, T) :- holds(F, T-1), step(T), not do(A, T-1) : del(A, F). % frame

:- goal(p), not holds(p, k). % goal at last step k

Problem instance encoding:
block(a;b;c;d).
init(on(a,b)). init(on(b,c)). init(ontable(c)). init(ontable(d)).
goal(on(a,d)). goal(on(d,b)). goal(on(b,c)).

action(stack(X,Y)) :- block(X), block(Y), X != Y.
prec(stack(X,Y), clear(Y)) :- block(X), block(Y), X != Y.
prec(stack(X,Y), holding(X)) :- block(X), block(Y), X != Y.
add(stack(X,Y), on(X,Y)) :- block(X), block(Y), X != Y.
del(stack(X,Y), holding(X);clear(X)) :- block(X), block(Y), X != Y.
...
step(1..10).
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ASP for Planning youtube tutorial

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 181/248

https://youtu.be/Rn-jPtQjFro?si=fkwcU7_zkrA-NO7K


Plasp: Tools for planning in ASP using Clingo
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https://github.com/potassco/plasp


Lots of planners in IPC 2023
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Part IV

Non-deterministic Planning
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Part 4: Non-deterministic Planning

11 Non-deterministic Planning

12 Solution Concepts for FOND Planning

13 Solving FOND Planning
FOND Planning using Classical Planners
FOND Planning via SAT
Compact Policies via ASP/SAT

14 Conditional Fairness
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Planning Models: Vanilla Model for Classical AI Planning

• finite and discrete state space S
• a known initial state s0 ∈ S
• a set SG ⊆ S of goal states
• actions A(s) ⊆ A applicable in each s ∈ S
• a deterministic transition function s′ = f(a, s) for a ∈ A(s)
• positive action costs c(a, s)

A solution/plan is seq. of applicable actions π = a0, . . . , an that maps s0 into SG.

Plan is optimal if it minimizes the sum of action costs.

Different models obtained by relaxing assumptions in bold.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 186/248



Planning Models: Vanilla Model for Classical AI Planning

• finite and discrete state space S
• a known initial state s0 ∈ S
• a set SG ⊆ S of goal states
• actions A(s) ⊆ A applicable in each s ∈ S
• a deterministic transition function s′ = f(a, s) for a ∈ A(s)
• positive action costs c(a, s)

A solution/plan is seq. of applicable actions π = a0, . . . , an that maps s0 into SG.

Plan is optimal if it minimizes the sum of action costs.

Different models obtained by relaxing assumptions in bold.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 186/248



Planning with non-deterministic actions
What if an action may yield different effect outcomes?

• Slipery floor: you may slip and fall (and maybe hurt yourself).

• Slipery blocksworld:
if you stack or unstack a block, it may fall down to the table.

• Dice rolling: if you roll a die, it may yield different outcomes:
1,2,3,4,5 or 6.

• Robot operation: when using the gripper, it may succeed or
fail to pick an object (and may need to retry).

• Finding parking: when visiting a block you may or may not find parking space (if not,
keep going around the block).

• Walking on beam: if you do a step on a beam, you may advance or fall down.

• Walking on corridor: if you do a step you may or may not be at the end of the corridor.
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Example: Harbor Management FOND Problem

Very simple harbor management domain:
1 Unload a single item from a ship.
2 Park the item in a storage facility.
3 Deliver it to gates (to be loaded into

tracks).

Storage and gates may be unavailable,
but we can always wait and move
containers around. (Example 11.1 in Acting, Planning, and Learning

Ghallab, Nau, Traverso 2025)
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https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A
https://www.cambridge.org/core/books/acting-planning-and-learning/CA9D7D25137AA950AC91A7D9F378EA0A


Planning with Markov Decision Processes

Goal MDPs are fully observable, probabilistic state models:

1 a state space S
2 initial state s0 ∈ S
3 a set G ⊆ S of goal states
4 actions A(s) ⊆ A applicable in each state s ∈ S
5 transition probabilities Pa(s

′ | s) for s ∈ S and a ∈ A(s) Hand-Point-Left
6 action costs c(a, s) > 0

• Solutions are functions (called “policies”) mapping states into actions; π : S 7→ A
I π(s) states what action to do in state s

• Optimal solutions minimize expected cost to goal.

• Reward-based MDPs involve rewards instead of costs, and discount factor γ ∈ [0, 1)
in place of goals. They underlie theory of RL.
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FOND Planning: Fully-observable Non-Deterministic Planning

A FOND state model is like the “logical” counterpart of Goal MDPs:

1 a state space S
2 initial state s0 ∈ S
3 a set G ⊆ S of goal states
4 actions A(s) ⊆ A applicable in each state s ∈ S
5 non-det state transition function F : successors s′ ∈ F (a, s), s ∈ S, a ∈ A(s) Hand-Point-Left
6 action costs c(a, s) = 1

• Main change from Classical Planning: F (a, s) maps to set of possible states (not to
one unique state).
I Nature decides what next state is reached after action a is applied in state s —

non-determinism.
I ... but agent will observe the state reached after a is applied.

• Main change from MDPs: possible transitions s ∈ F (a, s) not weighted by probabilities.
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Fully Observable Non-Deterministic Planning (FOND)
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Example: Does it have a solution?

• Is it possible to always deliver the
containers to the gates?

• If so, what is the sequence of
actions?

Need to know what to do in each state!

Policy
A policy π is a partial function from
states s into actions a; that is, π : S 7→ A.

(when undefined, agent stops acting)

Is there a “good” policy π?

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Does π1 solve the task?

Policy π1

S π1(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 back
transit1 move
transit2 move
transit3 move

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What about π2?

Policy π2

S π2(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 deliver
transit1 move
transit2 move
transit3 move

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Which one is better?
Policy π2

S π(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 back
transit1 move
transit2 move
transit3 move

Policy π4

S π(s)

on_ship unload
at_harbor park

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What if transit1 is a dead-end?

Policy π2

S π2(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 deliver
transit2 move
transit3 move

But could π2 succeed (sometimes)?

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What if parking2 is not connected to gates?

Policy π1

S π1(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 back
transit2 move
transit3 move

Storage parking1 may never be available!

But, what if we know parking1 would
eventually becomes available?

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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So, some lessons...

• Classical plans as sequences of actions are not
enough to solve FOND problems.

• We need to use a policy that maps states into
actions.
I More like “programs” with conditionals and loops!

• Some (bad) policies are better than others.

• Some policies may achieve the goal, but not
always.

• Some policies will achieve the goal if environment
is not too adversarial — not unfair.

This seems way more complex planning!
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Planning is hard!
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Kinds of Solution Policies

Acting, Planning, and Learning Ghallab, Nau, Traverso 2025
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Part 4: Non-deterministic Planning

11 Non-deterministic Planning

12 Solution Concepts for FOND Planning

13 Solving FOND Planning
FOND Planning using Classical Planners
FOND Planning via SAT
Compact Policies via ASP/SAT

14 Conditional Fairness
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FOND Planning: Solution Concepts
Running policy π from state s yields trajectories runs:
• π-trajectories s0, . . . , sn, such that si+1 ∈ F (ai, si), ai = π(si), for i ∈ [0, n− 1].

• π-trajectory maximal if 1) sn is goal state, 2) π(sn) = ⊥, or 3) n = ∞ (π is infinite)

FOND Planning Solution Concepts

1 π is a weak solution if there is a π-trajectory from s0 that reaches goal.

I At least one execution of the plan reaches the goal.

2 π is strong solution if all max π-trajectories from s0 reach the goal.

I All executions are guaranteed to reach the goal (in a known bounded number of actions!).
I Plans may have conditionals (but no loops!)

3 π is strong cyclic solution if for each state s reachable from s0 with a π-trajectory,
there is a π-trajectory from s to goal.

I Always a possibility to reach the goal.
I Goal will be achieved if environment is not “adversarial”
I Plans may have conditionals & loops!
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Weak Plans

S π1(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 back
transit2 move
transit3 move

D Policy π is a weak plan as there is a trajectory that reaches the goal.
I {on_ship}, {at_harbor}, {parking1}, {gate1}

6 But π is not a strong plan.
I {on_ship}, {at_harbor}, {parking2}, {at_harbor}, {parking2}, {at_harbor}, ...
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What about strong cyclic?

S π1(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 back
transit1 move
transit2 move
transit3 move

Policy π is strong cyclic solution if for each state s reachable from s0 with a π-trajectory,
there is a π-trajectory from s to goal.

• Yes!, policy never “loses” the possibility to get the goal
• But, it may loop “forever” in some states.
• We can make π strong by changing it to π1(parking2) = deliver.
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Strong cyclic policies: when do they work?
Question-Circle Is there a strong plan?

No!
Best we can do is:

S π1(s)

on_ship unload
at_harbor park
parking1 deliver
parking2 back
transit1 move
transit2 move
transit3 move

Question-Circle When will this policy reach the goal?

When executed in “fair” environments!

Fairness Environments
A trajectory σ is an unfair execution of π if a state s appears infinitely often in σ but some
outcome state s′ ∈ F (π(a), s) only appears a finite number of times in σ.
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Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

Question-Circle What type of environments?

• Where each effect listed has indeed
non-zero probability.

• Re-trying is an effective strategy.

I rolling a die until it shows a 6.
I driving around the block until a parking

space is available.
I pour into cup until full.

Fairness Environments
A trajectory σ is an unfair execution of π if a state s appears infinitely often in σ but some
outcome state s′ ∈ F (π(a), s) only appears a finite number of times in σ.
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 206/248



Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

Question-Circle What type of environments?

• Where each effect listed has indeed
non-zero probability.

• Re-trying is an effective strategy.

I rolling a die until it shows a 6.
I driving around the block until a parking

space is available.
I pour into cup until full.

Fairness Environments
A trajectory σ is an unfair execution of π if a state s appears infinitely often in σ but some
outcome state s′ ∈ F (π(a), s) only appears a finite number of times in σ.
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 206/248



Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

Question-Circle What type of environments?
• Where each effect listed has indeed
non-zero probability.

• Re-trying is an effective strategy.
I rolling a die until it shows a 6.
I driving around the block until a parking

space is available.
I pour into cup until full.

Fairness Environments
A trajectory σ is an unfair execution of π if a state s appears infinitely often in σ but some
outcome state s′ ∈ F (π(a), s) only appears a finite number of times in σ.
S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 206/248



Recap: Solution plans for FOND planning
• Classical sequential plans are not enough to solve FOND problems.

I We need more flexible behavior description (controlller) for agents

• We use policies mapping states into actions.
I Allow conditional and loops.

• Weak plans may get the goal if we are lucky — not really adequate.

• Strong plans are very demanding: they require that all possible executions of the plan
reach the goal. Often there is no strong plan!

• Strong-cyclic plans are more flexible: they allow loops and conditionals, and they
guarantee that the goal will be reached if the environment is fair.

• Many environments are fair: retrying is an effective strategy.

Question-Circle Question
How can we compute these plans with loops? How to compute strong-cyclic plans policies?
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Part 4: Non-deterministic Planning

11 Non-deterministic Planning

12 Solution Concepts for FOND Planning

13 Solving FOND Planning
FOND Planning using Classical Planners
FOND Planning via SAT
Compact Policies via ASP/SAT

14 Conditional Fairness
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Non-determinism in PDDL

• Non-deterministic effects added to PDDL
for the 5th IPC in 2006.

• Action effect can have a one-of effect:

(oneof e1 e2 ... en)

• To support uncertainty track in IPC-5.

(:action unstack
:parameters (?b1 ?b2 - block)
:precondition (and (not (= ?b1 ?b2)) (emptyhand) (clear ?b1) (on ?b1 ?b2))
:effect (oneof

(and (holding ?b1) (clear ?b2) (not (emptyhand)) (not (clear ?b1)) (not (on ?b1 ?b2)))
(and (clear ?b2) (on-table ?b1) (not (on ?b1 ?b2)))))

;; second effect: fail to grab; ?b1 ends on table
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for the 5th IPC in 2006.

• Action effect can have a one-of effect:

(oneof e1 e2 ... en)

• To support uncertainty track in IPC-5.

(:action pick-up-from-table
:parameters (?b - block)
:precondition (and (emptyhand) (clear ?b) (on-table ?b))
:effect (oneof

(and) ;; no effect - things stay the same!
(and (holding ?b) (not (emptyhand)) (not (on-table ?b)))))
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AI-Planning/fond-domains @ GH: Benchmark for FOND

https://github.com/AI-Planning/fond-domains
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AI-Planning/fond-utils @ GH: Utilities for FOND

https://github.com/AI-Planning/fond-utils
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FOND Planning using Classical Planners

One of the most effective ways to solve FOND planning problems is to use classical
planners! Weird...?

They all use a deterministic relaxation of the FOND problem:

All-outcome determinization
Deterministic relaxation PD of FOND P obtained by substituing non-det actions a with
effects {e1, . . . , en} by deterministic actions a1, . . . , an, where ai’s effect is ei, for i ∈ [1, n].

• PD is a deterministic classical planning problem.

• Under reasonable assumptions, PD is polynomially larger than P .

• There are tools to do the determinization:
https://github.com/AI-Planning/fond-utils
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Week and Online Solutions for FOND Planning

Weak (open loop) solution for P
From any classical plan ρ for PD:
• If ρ generates trajectory s0, . . . , sN in PD, set π(si) = a if ρi ∈ a.
• Run π and hope for the best!

Online (closed loop) solution method for P
Reach goal by interacting with FOND “system” that returns observation s′ ∈ F (a, s):

1 From current state s, initially s0, compute plan ρ = ρ1, . . . , ρN for PD[s].
2 Execute prefix a1, . . . , ai for ρi ∈ ai until state si observed is goal or different than

state s′i predicted in PD.
3 If si is goal, exit; else set s := si and go back to 1

Properties: If no dead-end states reachable in P , under mild assumptions, goal state
eventually reached. Else, method is incomplete.
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PRP: Strong Cyclic Policies using Classical Planners
More powerful off-line method, can compute strong cyclic policies:

PRP: Planning for Relevant Policies (Muise, McIllraith, Beck ICAPS’12)

1 Run simulated on-line method not just from s0 but from every possible sucessor s′ of a
(simulated) observed state s; i.e., s′ ∈ F (a, s) for a executed in s.

2 If state s′ ∈ F (a, s) is reached from which no classical plan for PD(s); remove a from
A(s), and start all over again.

3 Keep policy to π(s) = a where deterministic version ai is head of shortest classical
prefix found from s to goal.

Properties:
• Method is sound and complete: returns strong cyclic policy if one exists.
• More scalable than other methods as it uses classical planners.
• Can be made more efficient by generalizing plans using regression.
• Struggles if there are many “risky” nondeterminism leading to dead-ends.
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Regression to Generalize Policies

Consider the following situation:

1 Goal is G = {g}.
2 Classical plan ρ = a1, . . . , an optimally achieves G from state s0 in PD.
3 So, ρ yields trajectory s0, s1, . . . , sn in PD such that g ∈ sn.

I The last action of ρ has g ∈ Add(an) — an achieves the goal.
4 The precondition of an is Pre(an) = {p, q}.

I Clearly, p, q ∈ sn−1 – an’s precondition hold just before the goal.

So, we can set our FOND policy to π(sn−1) = an.

Is that the best we can do?

What about any other state s′ such that p, q ∈ s′? Can we also set π(s′) = an?
YES! — {p, q} is the regression of goal w.r.t. action an

Question-Circle Question
If Add(an−1) = {p} and Pre(an−1) = {w}, what states s′ can we set π(s′) = an−1?
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PRP Rebooted: AAAI’24

https://mulab.ai/project/pr2/
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Shortcomings of Classical Planners for FOND

PRP scales wellas it uses classical planners + regression. However:
• Codebase is highly sophisticated; thousands of lines.

• Uses a lot of tricks: regression, dead-end detection, regression, loop closing,
strong-cyclic check, etc.

• Struggle from “risky nondeterminism”, where previous search choices need to be thrown
and restarted.
I non-deterministic actions whose other effects will eventually lead to dead-ends.

• May output very large policies — no guarantees of “compactness”.

• Unable to handle mixed fairness environments.
I some actions are fair, others are unfair.

Question-Circle What can we do about these issues? Can we get a simpler, declarative solver for FOND?
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Question-Circle What can we do about these issues? Can we get a simpler, declarative solver for FOND?
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Recall Theory C(P, n) for Classical Problem P = 〈F,A, I,G〉

• Init: p0 for p ∈ I, ¬q0 for q ∈ F and q 6∈ I

• Goal: pn for p ∈ G

• Actions: For i = 0, 1, . . . , n− 1, and each action a ∈ A
I ai ⊃ pi for p ∈ Prec(a)

I ai ⊃ pi+1 for each p ∈ Add(a)

I ai ⊃ ¬pi+1 for each p ∈ Del(a)

• Persistence: For i = 0, . . . , n− 1, and each atom p ∈ F , where O(p+) and O(p−)
stand for the actions that add and delete p resp.
I pi ∧ ∧a∈O(p−)¬ai ⊃ pi+1

I ¬pi ∧ ∧a∈O(p+)¬ai ⊃ ¬pi+1

• Seriality: For each i = 0, . . . , n− 1, if a 6= a′, ¬(ai ∧ a′i)

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 218/248



Strong Cyclic Planning as SAT
Key idea: label each state with action and distance to goal.

• Variables of SAT encoding (i is not time index!)
I si: min “distance” from s to goal in policy is at most i
I sai: si and π(s) = a

• Formulas C(M); here M = S(P ) and max = |S| − 1:

1 smax for initial state sI ; max dist I to goal of length ≤ max
2 s0 for s ∈ SG and ¬s0 for s 6∈ SG

3 si ⊃ ∨a∈A(s) sai ; choose action in s, preserve distance
4 sai ⊃ ∨s′∈f(a,s) s

′
i−1 ; some successor gets closer to goal

5 si−1 ⊃ si ; if distance ≤ i− 1, then ≤ i
6 sai−1 ⊃ sai ; if distance ≤ i− 1, then ≤ i
7 samax ⊃ s′max ; if π(s) = a, all s′ ∈ f(a, s), must reach goal
8 samax ⊃ ¬sa′max; if π(s) = a, then π(s) 6= a′, a 6= a′.

s

t

q r

s6 ∧ sa6

r5 ∧ rb5q9 ∧ qa9

q120 ∧ qc120

a

a
a

b

b

c

x

q9 ∧ qa9

b

b

x4 ∧ xd4

Theorem
1 Model M has a strong-cyclic policy π iff C(M) is satisfiable.
2 If σ satisfies C(M), π(s) = a for samax true in σ is a strong-cyclic policy that solves M
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Too large encoding: Towards Compact Polocies

• Encodings are exhaustive, all states s represented! 6

• (Geffner & Geffner 2018) proposed an encoding in SAT computing compact policies.
I of course, not in worst case

• Can also be adjusted to compute strong policies.

• Can also handle dual FOND: fair and unfair actions!

• (Yadav & Sardina 2023): alternative encoding in a Answer Set Programming (ASP):
I More compact — exploits ASP first-order language.
I More readable — uses a more declarative style.
I Integrates regression ideas from PRP.
I Exploits ASP technology.
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Compact Controllers via ASP (Yadav & Sardina 2023)

Key idea: devise a finite state controller with n states - (Geffner & Geffner 2018)

Encoding in ASP for FOND problem P = 〈A, I,G〉:
• atom(P): for each predicate P ∈ A.

• action(A): for each action A ∈ A. In addition, to define an
action’s precondition and effects we use the following terms:
I prec(A, P): atom P is in precondition of action A.
I effect(A, E): associates an action with its E-th effect (one

per oneoff effect).
I add(A, E, P): E-th effect of action A adds atom P.
I del(A, E, P): E-th effect of action A deletes atom P.

• init(P): predicate P ∈ I is true in the initial state.

• goal(P): predicate P ∈ G is in the goal condition.

0

1

2

3

g

4

go(1, 2)

change(2)

refuel

go(2, 3)

change(2)

l ∧ f

l

f
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Define Controllers States and Transitions

Solver to decide:
1 policy(S, A): action A executed in controller state S.
2 next(S1, E, S2): S2 is the next controler state if the E-th effect of prescribed action in

S1 ocurrs.

1 state(0..k). % states of the controller
2 {policy(S, A): action(A)} = 1:- state(S), S != k.
3 {next(S1, E, S2): state(S2)} = 1 :- policy(S1, A), effect(A, E).

1 Defines controller k + 1 states. State k is goal state.
2 Select one action per controller state (except goal state k).
3 Defines a transition for each action’s effect to a next controller state.
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Define Controllers States and Transitions

1 holds(S, P) :- policy(S, A), prec(A, P).
2 holds(S1, P) :-
3 next(S1, E, S2), holds(S2, P), policy(S1, A), not add(A, E, P).
4 -holds(S2, P) :- next(S1, E, S2), policy(S1, A), del(A, E, P).
5 -holds(0, P) :- atom(P), not init(P).
6 holds(k, P) :- goal(P).

1 Preconditions must hold where action is prescribed.
2

3 Regression: P must have been true in the previous controller state.
4 Progression: P must be false next if action deleted it.
5 Initial state negative atoms.
6 What must be true at goal controller state k
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Define Solution Concept: Strong Cyclic

1 reachableG(S):- state(S), S = k.
2 reachableG(S):- next(S, _, S1), reachableG(S1).
3 :- not reachableG(S), state(S).

1 Goal controller state is reachable from itself.
2 Transitive clousure: Any (previous) controller state connected to a controller state that

reaches the goal state, also reaches the controller goal state.
3 Constraint: No controller state does not reach the goal state.
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Full FOND-ASP Code

1 state(0..k). % states of the controller
2 {policy(S, A): action(A)} = 1:- state(S), S != k.
3 {next(S1, E, S2): state(S2)} = 1 :- policy(S1, A), effect(A, E).
4

5 holds(S, P) :- policy(S, A), prec(A, P).
6 holds(S1, P) :-
7 next(S1, E, S2), holds(S2, P), policy(S1, A), not add(A, E, P).
8 -holds(S2, P) :- next(S1, E, S2), policy(S1, A), del(A, E, P).
9 -holds(0, P) :- atom(P), not init(P).

10 holds(k, P) :- goal(P).
11

12 reachableG(S):- state(S), S = k.
13 reachableG(S):- next(S, _, S1), reachableG(S1).
14 :- not reachableG(S), state(S).

If a model is returned, controller defined in predicates policy/2 and next/3.
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Experimental Results vs. PRP and FOND-SAT
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Recap SAT/ASP for FOND Planning

• Declarative elegant solver for FOND planning problems via SAT or ASP.

• Compact controllers: finite state controller with k + 1 states.

• Increase the size when no solution found, and repeat.

• Faster than classical planning based approaches in domains with meaningful
non-determinism (“risky”).

• Can incorporate domain control knowledge (e.g., “do not executre a after b”).

• Still struggles with large domains with “easy” non-determinism.
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Part 4: Non-deterministic Planning

11 Non-deterministic Planning
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Can the robot get the money?
Consider an robot in a corridor:

· · · · · ·

• Robot can move left or right (up to the walls). Unknown size of steps, but ≥ 1
• A price is at some of the end of the corridor.
• Robot doesn’t know its cell, but can sense if there is a wall on left/right after moving.
Question-Circle Can the robot get the money? How to model the setting?

(define (domain tile)
(:predicates (leftWall) (rightWall))
(:action right

:parameters ()
:precondition (not rightWall)
:effect (oneof () (rightWall)))

(:action left
:parameters ()
:precondition (not leftWall)
:effect (oneof () (leftWall)))

(:action pick
:parameters ()
:precondition (or leftWall rightWall)
:effect (rich)))

lwall rwall

rich
lwall

rich
rwallrich

right

right, left

left

pick

left

pick

right
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Can the robot get the money?
Consider an robot in a corridor:

· · · · · ·

• Robot can move left or right (up to the walls). Unknown size of steps, but ≥ 1
• A price is at some of the end of the corridor.
• Robot doesn’t know its cell, but can sense if there is a wall on left/right after moving.
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Can the robot get the money?

Consider an robot in a corridor:

· · · · · ·

Question-Circle Would this controller work?

YES!

1 2 3

left pick

lwall

Strong-cyclic policy: Retrying left works!

lwall rwall
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Can the robot get the money?
Consider an robot in a corridor:

· · · · · ·

Question-Circle What about this one?

NO!

1 2

3

4

left pick

right

lwall

rwall

How come? It is also a strong-cyclic policy!
States where rich true are always reachable..

left action done infinitely many times in initial state
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Conditional Fairness (Rodriguez et al. 2021)

• Standard fairness assumption is not enough:
I trying left is not sufficient!
I must not move right while trying...

• We need conditional fairness: left is fair as long as
right is not executed.
I Same for right: fair provided left is not executed.

• Standard FOND planners cannot handle this: they
assume that all actions are fair.

• (Rodriguez et al. 2021)’s FOND+ in ASP can
handle:
I Strong-cyclic policies with conditional fairness.
I Mixed fairness: some actions are fair, others not. (Best Paper Award ICAPS’21)
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FOND+

Let’s generalize FOND:

FOND+ Problem
A FOND+ problem Pc = 〈P,C〉 is a FOND problem P extended with a set C of
(conditional) fairness assumptions of the form Ai/Bi, i = 1, . . . , n and where each Ai is a
set of non-deterministic actions in P , and each Bi is a set of actions in P disjoint from Ai.

Meaning of A/B ∈ C: If a state trajectory contains infinite occurrences of actions a ∈ A in
a state s, and finite occurrences of actions from B, then s must be immediately followed by
each s′ ∈ F (π(s), s) an infinite number of times.

/ if left is executed infinitely many times in s, but right is executed, say, 10 times, then
eventually we will see the left wall.

S. Sardiña, AI Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 232/248



FOND Solutions as FOND+ Solutions

FOND+ Problem
A FOND+ problem Pc = 〈P,C〉 is a FOND problem P extended with a set C of
(conditional) fairness assumptions of the form Ai/Bi, i = 1, . . . , n and where each Ai is a
set of non-deterministic actions in P , and each Bi is a set of actions in P disjoint from Ai.

Strong and strong cyclic planning all have solutions defined by the implicit fairness
assumptions particular to each one of them.

Theorem
The strong-cyclic solutions of a FOND problem P are the solutions of the FOND+ problem
Pc = 〈P, {A/∅}〉, where A is the set of all the non-deterministic actions in P .

Theorem
The strong solutions of a FOND problem P are the solutions of the FOND+ problem
Pc = 〈P, ∅〉.
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FOND+-ASP: An ASP-based Planner
1 % policy, edges, and connectedness
2 { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S).
3 successor(S,T) :- pi(S,A), TRANSITION(S,A,T).
4
5 connected(S,T) :- successor(S,T).
6 connected(S,T) :- connected(S,X), successor(X,T), S != X.
7
8 blocked(S,T) :- STATE(S), STATE(T), not connected(S,T).
9 blocked(S,T) :- connected(S,T), terminate(S).

10 blocked(S,T) :- connected(S,T), terminate(T).
11 blocked(S,T) :- connected(S,T),
12 blocked(X,T) : successor(S,X), connected(X,T).
13
14 fair(S) :- pi(S,A), ASET(I,A), blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).
15
16 % terminating states
17 terminate(S) :- GOAL(S).
18 terminate(S) :- fair(S), successor(S,T), terminate(T).
19 terminate(S) :- not fair(S), successor(S,_), terminate(T) : successor(S,T).
20
21 % reachable states must terminate
22 :- reachable(S), not terminate(S).
23 reachable(S) :- INITIAL(S).
24 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).

figs/fondplus.lp

STATE(S)
INITIAL(S)
GOAL(S)
ACTION(A)
TRANSITION(S,A,T)
ASET(A,I)
BSET(B,I)

just 24 lines!
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FOND+-ASP: Graphical Intuition...

figure of a transition system, with two states looping, the first selects action A and the second
B. draw successors of each..
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FOND+-ASP: Solution Policy

1 % policy, edges, and connectedness
2 { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S).
3 successor(S,T) :- pi(S,A), TRANSITION(S,A,T).
4

5 % reachable states must terminate
6 :- reachable(S), not terminate(S).
7 reachable(S) :- INITIAL(S).
8 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).

2 Select an action per domain state.

3 Edges are transitions of the action selected.

6 Constraint: every reachable state via the policy needs to eventually terminate.

7-8 Define reachable states via the policy.
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FOND+-ASP: State Termination

Defines when a state will eventually lead to termination and not get “sucked” in a loop..

1 % terminating states
2 terminate(S) :- GOAL(S).
3 terminate(S) :- fair(S), successor(S,T), terminate(T).
4 terminate(S) :- not fair(S), successor(S,_),
5 terminate(T) : successor(S,T).

2 If the state is a goal state.

3 If state will behave fairly (wrt effects of prescribed action) and one successor state will
terminate.

4 If state may not behave fairly, and all successors will terminate.
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FOND+-ASP: Fairness

1 connected(S,T) :- successor(S,T).
2 connected(S,T) :- connected(S,X), successor(X,T), S != X.
3

4 % terminating states
5 terminate(S) :- GOAL(S).
6 terminate(S) :- fair(S), successor(S,T), terminate(T).
7 terminate(S) :- not fair(S), successor(S,_),
8 terminate(T) : successor(S,T).
9

10 fair(S) :- pi(S,A), ASET(I,A),
11 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

1-2 States connected by the policy.

4-7 Every path from S to T will terminate somewhere.

10 Fair if any loop that includes actions in a fairness pair A/B (e.g., left and right), will
terminate somewhere else.
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FOND+-ASP: Strong Cyclic

Theorem
The strong-cyclic solutions of a FOND problem P are the solutions of the FOND+ problem
Pc = 〈P, {A/∅}〉, where A is the set of all the non-deterministic actions in P .

1 % terminating states
2 terminate(S) :- GOAL(S).
3 terminate(S) :- fair(S), successor(S,T), terminate(T).
4 terminate(S) :- not fair(S), successor(S,_),
5 terminate(T) : successor(S,T).
6

7 fair(S) :- pi(S,A), ASET(I,A),
8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 3 always applies!

always false
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FOND+-ASP: Strong

Theorem
The strong solutions of a FOND problem P are the solutionsof the FOND+ problem
Pc = 〈P, ∅〉.

1 % terminating states
2 terminate(S) :- GOAL(S).
3 terminate(S) :- fair(S), successor(S,T), terminate(T).
4 terminate(S) :- not fair(S), successor(S,_),
5 terminate(T) : successor(S,T).
6

7 fair(S) :- pi(S,A), ASET(I,A),
8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 4 always applies!

always false
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Discussion

• We tested FOND+-ASP experimentally:
I Only planner that can solve FOND+ problems!
I Performs better than FOND-SAT and LTL

synthesis tool STRIX.
I PRP scales up better for FOND tasks.
I Limitation: state space grounding.

• FOND = simple extension of classical planning
I Just add oneof in effects!

• But brings radical changes:
I Complexity up to EXPTIME-complete.
I Builds plans with loops!
I Can model scenarios with ”re-tries”
I Can deal with adversarial domains.

• FOND+ and domains with “qualitative” numbers?
I e.g., distance to the wall
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Que vimos?

1 Busqueda as a general problem solving method:
I Representación: state model (a graph!).
I Uninformed methods: BrFS, DFS, IDS, UCS.
I Informed methods: A* and heuristics.
I Heuristics as problem relaxation.

2 Classical Planning = AI Search + AI KR
I Model-based approach to autonomous behavior.
I Languages: STRIP and PDDL.
I Heuristic extraction by relaxing the representation.
I Delete-relaxation heuristic: h+

I Approximations: hadd, hmax, hFF.
I Planning graphs.

3 FOND Planning: Non-determinism
I Non-deterministic state models (no probabilities!)
I PDDL with one-of effects + Policies.
I Solution concepts: weak, strong, strong-cyclic.
I Fairness assumption on environment.
I Computing policies.
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AI Planning and Control Synthesis in SE

• What if we want to plan for more complex goals?
à Elevator controller: every passenger floor
requests needs to be eventually fulfilled, but never
have more than 10 passengers on board.

• Event-driven systems: some events cannot be
planned/controlled (e.g., user aborts transaction)

• Infinite behavior: continuous operation, never
stop.
à What are the goals if we never finish? Infinite
games vs. finite games

• Compositional planning/synthesis: software
components described separately
à Plan on different PDDLs and the combine.
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LaFHIS - Laboratory on Fundamentals and Tools for Software Engineering
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Contact sebastian.sardina@rmit.edu.au - https://ssardina.github.io/

Gracias!
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sebastian.sardina@rmit.edu.au
https://ssardina.github.io/
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