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I\ Disclaimer / Descargo

Mixed-language warning

The talk will be in Spanish, but the slides are in English.
Sometimes I'll switch languages mid-sentence sin darme cuenta.

i Por qué?

Soy argentino ==, pero vivo hace muchos afios afuera ).

Ensefio en inglés, pienso en pseudo-espaiiol, y me expreso en Spanglish.
Basicamente, no hablo bien ninguno de los dos idiomas &'.

Pero tranqui, jigual nos vamos a entender!

Survival tips @

- Don’t worry, the concepts are the same in any idioma.
- Ask if you get lost (en cualquiera de los dos idiomas).
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Al Classical and Non-deterministic Planning

This course will survey Automated Planning as a
model-based Al approach to sequential decision making,
from the classical formulation to the more general variant
with non-determinism that relates to SE formal methods.

Special thanks to (and others!):

Hector Geffner @ RWTH Aachen University Nir Lipovetzky © l]ni. of Melbourne

Course site: https://ssardina.github.io/courses/eci25/
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Course Structure: 4 parts in 5 days

e Part 1: Introduction, Motivation, and Al Search

» Introduction & Motivation: State of Al research.
» Al Search: Uninformed Methods.
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Course Structure: 4 parts in 5 days

® Part 1: Introduction, Motivation, and Al Search
» Introduction & Motivation: State of Al research.
» Al Search: Uninformed Methods.
® Part 2: Classical Planning: Languages
» Informed Search and Heuristics.
» The Classical Model.
» Planning languages: STRIPS and PDDL.
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Course Structure: 4 parts in 5 days

® Part 1: Introduction, Motivation, and Al Search
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» Al Search: Uninformed Methods.
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» Informed Search and Heuristics.
» The Classical Model.
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Course Structure: 4 parts in 5 days

® Part 1: Introduction, Motivation, and Al Search
» Introduction & Motivation: State of Al research.
» Al Search: Uninformed Methods.
® Part 2: Classical Planning: Languages
» Informed Search and Heuristics.
» The Classical Model.
» Planning languages: STRIPS and PDDL.
¢ Part 3: Classical Planning: Methods and Algorithms
» Complexity of Planning.
» Heuristic-based methods.
» SAT-based solvers for planning.
® Part 4: Non-deterministic Planning
» FOND Planning & solution concepts.
» Methods for FOND Planning.

» Conditional Fairness.
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Plan for the rest of today

WHERE

About me & us HRE WE
GOING?

State of Al research

Al search for sequential decision making
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Course Structure: 4 parts in 5 days

e Part 1: Introduction, Motivation, and Al Search

» Introduction & Motivation: State of Al research.
» Al Search: Uninformed Methods.
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My CS journey started here!
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Gracias.... totales!

st Founded in 1946 - 1956 (seventh national university created in the country).
s¢ Structured in “Departments” (not Faculties!) 30,000+ students.
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Gracias.... totales!
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Founded in 1946 - 1956 (seventh national university created in the country).
Structured in “Departments” (not Faculties!) 30,000+ students.

Started Computer Science in 1993 in the Math Department - CS Dept. created in 1994!
w Graduated in 1997 (Thesis on Non-monotonic Logics).

¢ Tutor (“ayudate”) 1994-1997 and head tutor (“JTP") 1997-1998.
® President of CeCom - Centro de Estudiantes de Computacion 1997-1998.

Member of Departmental Council & University Assembly.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 14/248



S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 15/248



En defensa de la universidad publica... I

S. Sardifa, Al Classical and Non-deterministic Planning:

March 8th, 2024

Engineer Mr. Nicolas Posse, Chief of the Cabinet of Ministers
c.c. Dr. Daniel Salamone, President of CONICET
c.c. Members of the Board of Directors of CONICET

As members of the Computer Science intemational scientific community, we write to express our strong
support to the Argentine scientific community in these dificult times. We are deeply concemed by the
recent developments in Argentina in regards to how the prestigious Argentine national science and
technology system has been brought to a standstil that undermines the country's science and technology
sector due to the actions and inactions of your government

We believe that decisions such as cutting PhD fellowships and promotions, withdrawing already committed
funds to ongoing research projects, laying off administrative employees in research institutions, and
freezing the investment in science in the context of high inflation levels have a short and long term
devastating effect on the national scientific and technology system of Argentina.

Neglecting the role of the state in supporting science and technology is myopic and detrimentally affects the
development possibiltes of the country. There is extensive evidence that the state, by actively investing in
science and technology when private investors found it too fisky to do 5o, is a lead investor and key enabler
of innovative knowledge and technologies that promote economic growth. In fact, the state has been behind
the most significant technological advancements in our field that we see and enjoy today, from the search
algorithms behind Google to the many technologies packed inside an iPhone to the wireless technology
and the Intemnet itself, and to today Al-based technologies running Machine Learing algorithms.

Ignoring and disregarding the role of science and technology in modem society and the role of the state in
promoting and fostering them is something a country cannot afford.

We ask you to listen to the Argentine scientific community's demands and actively work with their members
towards preserving and improving a system that fosters the progress of the country's science and
technology for the benefit of the nation.

Sincerely,

Prof. Sebastian Sardifia
RMIT University, AUSTRALIA

Prof. Hector Gefiner
RWTH Aachen University, GERMANY
Alexander von Humboldt Professor in Al, AAAI and EurAl fellow

Senior Lecturer Dr. Damiano Spina
RMIT University, AUSTRALIA

Prof. Diego Calvanese

Free University of Bozen-Bolzano, ITALY
ACM Fellow, EurAl Fellow, AAIA Fellow

‘ - —

Model-based Autonomous Behavior, , July 28 -August 1, ECI25 15/248



https://tinyurl.com/ykzft28k

RMIT University

What does “RMIT" stand for? What about the “R"? °

® Public university.

* Founded 1887 (training institute for
workers).

e 80,000+ students.

® 3 campuses in Melbourne
» 1 campus in Vietnam.

» 1 center in Barcelonal!

e Known for Art & Design, and
Architecture.

“Ji = AL

1afem)y

® Also very strong in Engineering, (click to see 1 min video)

Business and IT.
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RMIT University

RMIT = Royal Melbourne Institute of Technology

® Public university.

® Founded 1887 (training institute for
workers).

e 80,000+ students.

® 3 campuses in Melbourne
» 1 campus in Vietnam.

» 1 center in Barcelonal

e Known for Art & Design, and
Architecture.

® Also very strong in Engineering, (click to see 1 min video)
Business and IT.
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Al Innovation Lab

ce / Our research / Research

About RMIT / Sch

We are Al researchers who develop and extend solutions to further and enhance human capabilities,
improving our quality of life through the use of artificial intelligence.

We target problems that have a direct impact, focusing on solving practical real-world problems by bringing the cutting-edge of Al to Industries
including Transport, Food & Agriculture, and Advanced Manufacturing.

Research capabilities

Robotics & Human Ct i O isation and Planning Autonomous Decision Systems
We focus on software technologies for intelligent We develop algorithms that find the optimal Many real-world problems are far too complex for a
collaboration between humans and robots, solutions and plans of action for complex problems.  single human mind to handle, instead our capacity
applying this to problems which are too dangerous  Our expertise includes nature-inspired and large- o solve these complex problems can only be

or tedious for humans to complete themselves. We  scale optimisation, operational research, machine enhanced by augmenting it with automated




My research /work
Did my PhD at University of Toronto, 1998-2005.

» Supervised by Hector Levesque; Winograd schema challenge

Started at RMIT in July 2025 as postdoc; permanent academic since 2010

Teach “foundational” CS courses:
> Maths for CS (1st year)
» Theory of Computation
> Artificial Intelligence
» Constraint Programming / Answer Set Programming

Research areas/topics = KR N Agents N Planning

» Cognitive Robotics / Agent programming
» Al Planning
> Goal/intention recognition

» Behavior Composition

Also contribute to Computational Thinking in the community (schools & centers,
Victorian Curriculum, school teachers’ professional development, etc.)
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Who are we? Your turn!

2552 6250 @ menti.com

https://www.menti.com/al89ktgno9yf
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State of Al research
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A Bit of History: Al Programming and Problem of Generality

There was a time (60s, 70s, 80s) when Al was done mostly by programming:

pick up a challenging task and domain X (humor, story understanding, ...)
analyze/introspect/find out how task is solved
capture this reasoning in a program (usually knowledge base + rules)
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A Bit of History: Al Programming and Problem of Generality

There was a time (60s, 70s, 80s) when Al was done mostly by programming:

pick up a challenging task and domain X (humor, story understanding, ...)
analyze/introspect/find out how task is solved
capture this reasoning in a program (usually knowledge base + rules)

Great ideas on programming and Al programming, but methodological problem: “F

® Programs written by hand were clever but not robust or general.
® They worked on scenarios envisioned by programmer but failed on others.

% Difficult to understand/debug when failing: far from the actual problem /task.
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Al Winter: the 80's

ARTIFICIAL
INTELLIGENCE

The rule+knowledge-based approach reached an impasse in the
80’s, a time also of debates and controversies:

® Good Old Fashioned Al is ‘rule application’ but
intelligence is not (J. Haugeland)

I\ Many criticisms of mainstream Al partially valid then; less
valid now.

John Haugeland
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https://direct.mit.edu/books/book/4347/Artificial-IntelligenceThe-Very-Idea

Al 90's - 2020

Formalization of Al techniques and increased use of mathematics. Recent issues of AlJ, JAIR,
AAAI or IJCAI shows papers on:

SAT and Constraints
Search and Planning “*
Probabilistic Reasoning
Probabilistic Planning

Inference in First-Order Logic
@ Machine Learning

Natural Language

B Vision and Robotics

B Multi-Agent Systems

%t Areas 1 to 4 often deemed about techniques, but more accurate to regard them as models
and solvers.
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Motivation: Models and Solvers

Problem =—> = Solution

® Problem: The age of John is 3 times the age of Peter. In 10 years, it will be only 2
times. How old are John and Peter?

* Expressed as: J =3P ; J+ 10=2(P +10)
* Solver: Gauss-Jordan (Variable Elimination)

e Solution: P=10 ; J =30
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Motivation: Models and Solvers

Problem =—> = Solution

Example

® Problem: The age of John is 3 times the age of Peter. In 10 years, it will be only 2
times. How old are John and Peter?

* Expressed as: J =3P ; J+ 10=2(P +10)
* Solver: Gauss-Jordan (Variable Elimination)

e Solution: P=10 ; J =30

m Solver is general: deals with any problem expressed as an instance of model.
w  Linear equations model is too simple; Al models more challenging.
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Motivation: Models and Solvers

Problem =—> = Solution

Example

® Problem: The age of John is 3 times the age of Peter. In 10 years, it will be only 2
times. How old are John and Peter?

* Expressed as: J =3P ; J+ 10=2(P +10)
* Solver: Gauss-Jordan (Variable Elimination)

e Solution: P=10 ; J =30

m Solver is general: deals with any problem expressed as an instance of model.
w  Linear equations model is too simple; Al models more challenging.

4% Models good not just for solving but also for understanding problems.
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From Programs to Solvers and Learners

® Generality problem increasingly led to methodological shift in 80s-90s:
> from programs for ill-defined problems ...

» to algorithms for well-defined mathematical tasks.

® New programs, solvers and learners, have a crisp functionality, and both can be seen
as computing functions that map inputs into outputs

Input ©* = = Output f(z)

® The algorithms are general: not tied to particular examples but to classes of models and
tasks expressed in mathematical form.
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Solvers (Reasoners)

Input © — = Output f(z)

* Solvers derive output f(x) for given input = from model:
» SAT: z is a formula in CNF, f(x) = 1 if x satisfiable, else f(xz) = 0.

> Classical planner: z is a planning problem P, and f(x) is plan that solves P. <
> Bayesian net: z is a query over Bayes Net and f(z) is the answer.
> Constraint satisfaction, Markov decision processes, POMDPs, ...

v/ Generality: Solvers not tailored to particular examples.

v/ Expressivity: Some models very expressive; e.g., POMDPs.

® Challenges:
» Scalability; computation of f(z) is NP-hard (or more!).

» Models must be known.
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Solvers (Reasoners)

Input © — = Output f(z)

* Solvers derive output f(x) for given input = from model:
» SAT: z is a formula in CNF, f(x) = 1 if x satisfiable, else f(xz) = 0.

> Classical planner: z is a planning problem P, and f(x) is plan that solves P. <
> Bayesian net: z is a query over Bayes Net and f(z) is the answer.

> Constraint satisfaction, Markov decision processes, POMDPs, ...
v/ Generality: Solvers not tailored to particular examples.

v/ Expressivity: Some models very expressive; e.g., POMDPs.

® Challenges:
» Scalability; computation of f(z) is NP-hard (or more!).

» Models must be known.
3¢ Learners are solvers too: argmin, » . L(z, f,,(x)) (Differentiable programming)
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Learners

Input + = |FUNCTION f9| — Output fp(x)

* In deep learning (DL) and deep reinforcement learning (DRL), training results (the
“model") in function fy(-).
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Learners

Input + = |FUNCTION f9| — Output fp(x)

* In deep learning (DL) and deep reinforcement learning (DRL), training results (the
“model"”) in function fy(-).

® fo(-) given by structure of neural network and adjustable parameters 6.
» In DL, input = may be an image and output fy(z) a classification label.
> In DRL, input = may be state of game, and output fy(z), value of state.

® Parameters 6 learned by minimizing error function by stochastic gradient descent.
» In DL, error depends on inputs and target outputs in training set.

» In DRL, error depends on value of states and successor states.
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Learners

Input + = |FUNCTION f9| — Output fp(x)

* In deep learning (DL) and deep reinforcement learning (DRL), training results (the
“model"”) in function fy(-).

® fo(-) given by structure of neural network and adjustable parameters 6.
» In DL, input = may be an image and output fy(z) a classification label.

> In DRL, input = may be state of game, and output fy(z), value of state.

® Parameters 6 learned by minimizing error function by stochastic gradient descent.
» In DL, error depends on inputs and target outputs in training set.

» In DRL, error depends on value of states and successor states.
/A true revolution in Al still unfolding...

® Limitations: transparency, amounts of data, generalization, understanding
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Learners vs Solvers

Input © = = Output f(z)

Solvers

¢ Learners require experience over related problems z
but then fast!

» They compute function f from training, then apply it.

¢ Solvers deal with new problems = but need models,
and need to “think” hard.

» They compute f(z) for each input x from scratch; out
of the box.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 28/248



Learners and Solvers: System 1 and System 27

Dual process accounts of the human mind assume two processes
(D. Kahneman: Thinking, Fast and Slow, 2011; K. Stanovich: The Robot's Rebellion, 2005)

(Intuitive Mind) (Analytical Mind)

System 1 System 2

e Fast e Slow

e Automatic ¢ Deliberative

e Unconscious e Conscious

o Efforallel o Effortful

e Error-prone e General

e Parallel e Reliable
Learners? Solvers?

THE NEW YORK TIMES BESTSELLER

THINKING,

FAST..SLOW

IH 5 < xw&?
DANIEL

KAHNEMAN

WINNER OF THE NOBEL PRIZE IN ECONOMICS
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SAT and CSPs

e SAT: determine if there is a truth assignment that satisfies a set of clauses:
(xV—-yV-oz)A(mxVy) A(yVz)A..

® Problem is NP-Complete, which in practice means worst-case behavior of SAT algorithms
is exponential in number of variables (21%0 = 103°).

® Yet current SAT solvers manage to solve problems with thousands of variables and
clauses, and used widely (circuit design, verification, planning, etc).

e Constraint Satisfaction Problems (CSPs) generalize SAT by accommodating non-boolean
variables as well, and constraints that are not clauses.

* Key is efficient (poly-time) inference in every node of search tree: unit resolution,
conflict-based learning, ...
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Classical Planning Model

Planning is the model-based approach to autonomous behavior.
e A system can be in one of many states.

e States assign values to a set of variables.

Actions change the values of certain variables.

Basic task: find action sequence to drive initial state into goal state:

Model World © — = Action Sequence f(x)

Complexity: NP-hard+; i.e., exponential in number of vars in worst case.

e Planner is generic: should work on any domain no matter what variables are about.
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Why do we need such Al Planning?

Settings where greater autonomy required:

Space Exploration: (RAX) first artificial intelligence control system to control a
spacecraft without human supervision (1998)

Business Process Management

First Person Shooters & Games: classical planners playing Atari Games
Interactive Storytelling

Network Security

Logistics/ Transportation/Manufacturing: Multi-model Transportation, forest fire
fighting, PARC printer

Wherehouse Automation: Multi-Agent Path Finding, Post China, Amazon
Automation of Industrial Operations (Schlumberger)

Self Driving Cars ...
¢ Find out more at ICAPS in Action (right panel)
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the Al timeline'a
.aaai.org/AlLand




Summary: Al and Automated Problem Solving

® A research agenda emerged in last 20 years: solvers for a range of intractable models.

e Solvers unlike other programs are general as they do not target individual problems but
families of problems (models).
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Summary: Al and Automated Problem Solving

A research agenda emerged in last 20 years: solvers for a range of intractable models.

Solvers unlike other programs are general as they do not target individual problems but
families of problems (models).

The challenge is computational: how to scale up.

Sheer size of problem shouldn't be impediment to meaningful solution.

Structure of given problem must recognized and exploited.
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Summary: Al and Automated Problem Solving

A research agenda emerged in last 20 years: solvers for a range of intractable models.

Solvers unlike other programs are general as they do not target individual problems but
families of problems (models).

The challenge is computational: how to scale up.

Sheer size of problem shouldn't be impediment to meaningful solution.

Structure of given problem must recognized and exploited.

¢ Lots of room for ideas but methodology empirical.

e Consistent progress:
> effective inference methods (derivation of h, conflict-learning)

> islands of tractability (treewidth methods and relaxations)

» transformations (compiling away incomplete info, extended goals, ...)
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Course Aim

® Not a full-fledge course on Al Planning; too much for us...
» Full semester courses (124 weeks) and still not complete

® Focus is on coherent research thread that covers a lot of ground:

» Crisp and simple ideas and formulations for stating, understanding, and addressing key
problems.

® Many open problems; many opportunities for research
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System 1 and 2 Intelligence: A Key Challenge in Al

® General two-way integration of System 1 and System 2 inference in Al systems:
» Learners and solvers should inform, complement, and enhance each other.

® Yoshua Bengio's challenges reflected in title of his [JCAI 2021 talk:

» System 2 Deep Learning: Higher-level cognition, agency, out-of-distribution generalization
and causality.

¢ Yann LeCun'’s three challenges, AAAI 2020:
» Al must learn to represent the world.
> Al must think and plan in ways compatible with gradient-based learning.

» Al must learn hierarchical representation of action plans.
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Research Challenge: Minigrid

e Task: Pick up grey box behind you, then
go to grey key and open door

® Agent is red triangle at bottom right.
Light-grey is field of view.

® | earn controller that accepts goals and
observations, and outputs actions.

® How to get such a controller? Action
model and goal language not known, but
can do trial-and-error.
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https://github.com/Farama-Foundation/Minigrid

Methodology: Bottom-Up vs. Top-Down Learning

* Deep (reinforcement) learning methods struggle in these problems,but manage to
generate meaningful behavior after millions of trials (despite so little prior knowledge).

* Yet methodology largely ad-hoc: from intuitions to architectures and experiments
using baselines; performance improvements but no crisp understanding.
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Methodology: Bottom-Up vs. Top-Down Learning

* Deep (reinforcement) learning methods struggle in these problems,but manage to
generate meaningful behavior after millions of trials (despite so little prior knowledge).

* Yet methodology largely ad-hoc: from intuitions to architectures and experiments
using baselines; performance improvements but no crisp understanding.

Alternative: Top-Down

Alternative: complementary, top-down approach asks crisp questions like:

® What are the domain-independent languages for representing dynamics?
* What the languages for representing general reactive policies, subgoals?
® What are good solvers for those representations?

® How can representations over such languages be learned?
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Al and Social Impact
® System 2 not only necessary for Al systems; essential for people and societies.
o Al far from human-level intelligence, yet it can be used for good or ill.

® Ethical committees and Al principles good but not sufficient.

s

® Markets and politics play our System 1, focused on the bottom line.
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Al and Social Impact

System 2 not only necessary for Al systems; essential for people and societies.

Al far from human-level intelligence, yet it can be used for good or ill.

Ethical committees and Al principles good but not sufficient.

® Markets and politics play our System 1, focused on the bottom line. %8

¢ |f we want good Al, we need a good and decent
society, that make use of our System 2 and cares
about truth, reason, knowledge, and the common
good.

® Take courses on Social and technological change...

4
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Part 1: Introduction, Motivation, and Al Search

Introduction

About me & us

State of Al research

Al Search
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Part 1: Introduction, Motivation, and Al Search

Al Search
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Ready to go?
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Al's favourite trick

Al SEARCH
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Part |l

Classical Planning: Languages
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Part 2: Classical Planning: Languages

Motivation

[ State Models and Search

Planning Languages
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Part 2: Classical Planning: Languages

Motivation
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Course Web Page

HOME PUBLICATIONS SERVICE SYSTEMS TEACHING STUDENTS COLLABORATORS CONTACT

ECI25 - Al Planning Course

This course will survey Automated Planning as a model-based Al approach to sequential decision making, from the classical formulation to more general
varlants, and its relation with other areas of CS and Al, like formal methods or intelligent agents.

Resources

= Day 1: Intro, Motivation, and Search
= Slides Intro PDF

» Slides Search Google Slides

= Day 2: Classical Planning

References
Books

= 5. Russell and P. Norvig. Artificial Intelligence : A Modern approach, Pearson. 4th, 2021.
= H. Geffner, B. Bonet. A Concise Introduction to Models and Methods for Automated Planning. Morgan & Claypool. 2013,
= Ghallab, M., Nau, D. & Traverso, P. 2004. Automated Planning: Theory and Practice. Elsevier.

= Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, Christian Muise: An Introduction to the Planning Domain Definition Language. Synthesis Lectures

https://ssardina.github.io/courses/eci25/
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Beating Kasparov is great...
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Beating Kasparov is great . . . but how to play Mario?

S [T
T.T
-

g -

T
T
ENTERSTEM

® You (and your brother/sister/little nephew) are better than Deep Blue at everything -
except playing Chess.

© Is that (artificial) ‘Intelligence’?

w How to build machines that automatically solve new problems?
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Planning: Motivation

How to develop systems or “agents”
that can make decisions on their own?
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Autonomous Behavior in Al

¢ Key problem is to select the action to do next. This is the so-called “control problem”.

Three mainstream approaches to action selection

Behavior-based: Set of independent simple reactive modules.

= Brook's subsumption architecture (80°)
Programming-based: Specify control by hand

= Agent-oriented programming (e.g., PRS, JACK, 3APL, SARL)
Learning-based: Learn control from experience

= Reinforcement Learning; Evolutionary algorithms

Model-based: Specify problem by hand, derive control automatically
= Automated Planning, Model Predictive Control

Note:

® Approaches not orthogonal; successes and limitations in each ...

e Different models yield different types of controllers ...
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Programming-Based Approach

Control specified by programmer, e.g.:

® |If Mario finds no danger, then run...

® |If danger appears and Mario is big, jump and kill ...

v/ Advantage: domain-knowledge easy to express.

® Disadvantage: cannot deal with situations not anticipated by programmer.
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Learning-Based Approach

Learns a controller from experience or through simulation:
* Unsupervised (Reinforcement Learning):
» penalize Mario each time that 'dies’

» reward agent each time oponent 'dies’ and level is finished, ...

* Supervised (Classification)
» learn to classify actions into good or bad from info provided by teacher

¢ Evolutionary:

» from pool of possible controllers: try them out, select the ones that do best, and mutate
and recombine for a number of iterations, keeping best

v/ Advantage: does not require much knowledge in principle.

® Disadvantage: in practice, hard to know which features to learn, and is slow.
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General Problem Solving

Ambition: Write one program that can solve all problems.
* Write X € {"algorithms”} : for all Y € {“problems”} : X “solves” Y’

® What is a “problem”? What does it mean to “solve” it?
Ambition 2.0: Write one program that can solve a large class of problems.

Ambition 3.0: Write one program that can solve a large class of problems effectively.

(some new problem) ~ (describe problem — use off-the-shelf solver) ~ (solution
competitive with a human-made specialized program)

{5 Beat humans at coming up with clever solution methods!

(Link: GPS started on 1959)
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Model-Based Approach / General Problem Solving

specify model for problem: actions, initial situation, goals, and sensors; and

let a solver compute controller automatically.

Actions
Sensors —
Goals

SOLVER

— CONTROLLER

actions

World

observations
{_
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Programming vs. Planning

Actions available:
Monster in sight Patrol:
» Preconditions: No Monster

» Effects: patrolled
Fight:

» Preconditions: Monster in sight

vSs

» Effects: No Monster
No monster

Goal: area patrolled
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Model-Based Approach / General Problem Solving

® Powerful: In some applications generality is absolutely necessary.

® Quick: Rapid prototyping. 10s lines of problem description vs. 1000s lines of C++ code.
(Language generation!)

® Flexible & Clear: Adapt/maintain the description.

e Intelligent & domain-independent: Determines automatically how to solve a complex
problem effectively!
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Model-Based Approach / General Problem Solving

® Powerful: In some applications generality is absolutely necessary.

® Quick: Rapid prototyping. 10s lines of problem description vs. 1000s lines of C++ code.
(Language generation!)

¢ Flexible & Clear: Adapt/maintain the description.

e Intelligent & domain-independent: Determines automatically how to solve a complex
problem effectively!

Disadvantages

® Need a model: Without knowledge about Chess, you don’t beat Kasparov ...
e Computationally intractable: at leat NP-hard!
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Model-Based Approach / General Problem Solving

® Powerful: In some applications generality is absolutely necessary.

® Quick: Rapid prototyping. 10s lines of problem description vs. 1000s lines of C++ code.
(Language generation!)

* Flexible & Clear: Adapt/maintain the description.

® [ntelligent & domain-independent: Determines automatically how to solve a complex
problem effectively!

Disadvantages

® Need a model: Without knowledge about Chess, you don’t beat Kasparov ...
e Computationally intractable: at leat NP-hard!

v Trade-off between “automatic and general” vs. “manual work but effective”.

Model-based approach to intelligent behavior called “Planning” in Al.
© How to make fully automatic algorithms effective?
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What is “planning”?

@ Patrik Haslum

“Planning is the art and practice of thinking before acting: of reviewing the courses of
action one has available and predicting their expected (and unexpected) results to be able
to choose the course of action most beneficial with respect to one’s goals.”
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What is “planning”?

@ Patrik Haslum

“Planning is the art and practice of thinking before acting: of reviewing the courses of
action one has available and predicting their expected (and unexpected) results to be able
to choose the course of action most beneficial with respect to one’s goals.”

@ Belief-Desire-Intention (BDI) model of agency - (Bratman '87)

Rational behavior arises due to the agent committing to some of its desires, and selecting
actions that achieve its intentions given its beliefs.
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Example: Classical Search Problem

States: Card positions (position Jspades=Qhearts).

Actions: Card moves (move Jspades Qhearts freecell4 ).

Initial state: Start configuration.
® Goal states: All cards ‘home’.

® Solution: Card moves solving this game.
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Applications of Planning: Space

logy Directorate

Autonomous Systems and Robotics

Collaborative and Assistant Systems

Planning & Scheduling Group

Overview
The NASA Ames Planning and Scheduling Group (PSG) has and i for

automated planning, scheduling, and control. The group has technical expertise in a variety of areas including Al
planning, ial inati i

constraint satisfaction, and multi it 5 i the group
has extensive experience delivering planning and scheduling software to NASA missions involving ground, flight,
and surface operations across the spectrum of NASA endeavors on Earth, in space, and for planetary exploration.
Planning and scheduling problems are pervasive in NASA ground and flight operations. Examples include:

« Scheduling of crew training facilities

« Scheduling activities aboard the International Space Station

+ Scheduling of Deep Space Network communications

« Planning daily activities of rovers such as the Mars Exploration Rovers
« Planning activities of spacecraft such as Deep Space 1

« Science operations planning for UAVs

« Emergency planning for damaged aircraft

Akey component in every phase of mission operations is planning and scheduling activities, including crew
training, ground operations, control of life support systems, and exploration and construction tasks. Future

exploration missions o the moon and Mars will involve complex vehicles, habitats, and robotic systems.

Automated planning and scheduling will increase the safety of these missions and reduce their cost. Similarly,
automated planning is crucial in order to maximize science return from deep space probes and even terrestrial
observing systems. Finally, automated planning complements and enhances the capabilities of human operators.

Diverse as they are, all of these planning and scheduling applications share some common characteristics:

+ Complex temporal constraints -Many activities like communication can only be done during certain time
windows, while other activities must be done in a particular order

Discoveryand §

Editor: Richard Doyle

Jet ropulsion Lab

doylejpl.nasa.gov

Al in Space

Marpcen: Mixed-
Planning and Scheduling for the
Mars Exploration Rover Mission

nitiative

Mitchell Ai-Chang, John Bresina, Len Charest, Adam Chase, Jennifer Cheng-jung Hsu, Ari
Jonsson, Bob Kanefsky, Paul Morris, Kanna Rajan, Jeffrey Yglesias, Brian G. Chafin, William C.
Dias, and Pierre F. Maldague, NASA Ames Research Center and the Jet Propulsion Laboratory

Tnc Mars Exploration Rover mission is one of

NASA's most ambitious science missions to date.
Launched in the summer of 2003, each rover carries in-

struments for conducting remote and in situ observations

o0 elucidate the planet’s past climate, water activity, and
habitability

Science is MER's primary driver. so making best use of
the scientific instruments. within the available resources.
is a crucial aspect of the mission. To address this critical-
ity. the MER project team selected Marcex (Mixed Initia-
tive Activity Plan Gererator) as an activity-planning tool.

N combines two existing systems, each with a

strong heritage: the APGENACtivity=pIANNIAg 001" from the
Jet Propulsion Laboratory and the Euop planning and

scheduling system? from NASA Ames Research Center.
‘This article discusses the issues arising from combining
these tools in this mission’s context.

Combining systems

Ina most exciting development, two NASA rovers—
named Spirit and Opportunity—were slated to arrive at the
Red Planetin January. at two scientifically distinct stes.
(Spirit arrived successfully on 3 January, with Opportunity
scheduled to arrive 24 January—see Figures 1 and 2.) Each
rover will have an operational lifetime of 90 sols (Martian
days) or more and can traverse an integrated distance of
one kilometer or more. although the maximum range from
the landing site might be less. Scientifically, MER seeks to

« Determine the aqueous, climatic, and geologic history
of a site where on Mars conditions might have been
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Applications of Planning: Machine Control

On-line Planning and Scheduling:
An Application to Controlling Modular Printers

‘Wheeler Ruml
Department of Computer Science
University of New Hampshire
33 Academic Way

Durham, NH 03824 USA
Minh Binh Do

Rong Zhou

Markus P. J. Fromherz
Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, CA 94304 USA

RUML AT CS.UNH.EDU

MINHDO AT PARC.COM
RZHOU AT PARC.COM
FROMHERZ AT PARC.COM

Abstract

We present a case study of artificial intelligence techniques applied to [l controlof
production printing equipments: Like many other real-world applications, this complex do-
main requires high-speed decision-making and robust operation. To
our knowledge, this work represents the first ful industrial application of embedded
domain-independent temporal planning. Our em handles execution failures and multi-
objective preferences. At its heart is an on-line algorithm that combines techniques from
state=space planning and partial-order scheduling. We suggest that this general architec-
ture may prove useful in other applications as more intelligent systems operate in continual,
on-line settings. Our system has been used to drive several commercial prototypes and
has enabled a new product architecture for our industrial partner. When compared with
state-of-the-art off-line planners, our system is hundreds of times faster and often finds
better plans. Our experience demonstrates that domain-independent AT planning based on
heuristic search can flexibly handle time, resources, replanning, and multiple objectives in
a high-speed practical application without requiring hand-coded control knowledge.
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Figure 1: A prototype modular printer built at PARC. The system is composed of approx-
imately 170 individually controlled modules, including four print engines.
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Applications of Planning:

Proc: f the Thirty-First Conferen

on Automated Planning and Scheduling (ICAPS 2021)

In-Station Train Dispatching: A PDDL+ Planning Approach

Matteo Cardellini,' Marco Maratea,' Mauro Vallati,” Gianluca Boleto,' Luca Oneto

! DIBRIS, University of Genoa, Italy
2 School of Computing and Engineering, University of Huddersfield, UK
e ¢ Sy ¢

matteo.card;

unige.it, marco.

gianluca.

.it, m.vallati@hud.ac.uk,

Abstract

In railway networks, stations are probably the most critical
points for interconnecting trains’ routes: in a restricted geo-
graphical area, a potentially large number of trains have to
stop according to an official timetable, with the concrete risk
of accumulating delays that can then have a knockout effect
on the rest of the network. In this context, in-station train dis-
patching plays a central role in maximising the effective util-
isation of available railway infrastructures and in mitigating
the impact of incidents and delays. Unfortunately, in-station
train di ing is still lareelv handled manually by human

.unige.it, luca @unige.it

give instructions to train conductors with regards to the path
to follow, and the platform to reach (if needed). This job is
currently receiving very limited support by the railway con-
trol systems which provide an abstract overview of the traffic
conditions of the station focusing mainly on the safety of the
passengers.

In this paper we concentrate on the in-station train dis-
patching problem and make a significant step towards sup-
porting the operator with a tool able to solve the problem in
an automated way by means of automated planning. Given

ha mivad dicseata cant antnea af tha nenhlam

Train Dispatching

At EntryPoint
Enter Station

Track Segment
! | l

[ Exit Station

|
[

Begin Stop J [ Begin Overlap

Completed Completed
Stop Overlap

Reach
Destination

Intermediate
Stop
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Applications of Planning: Traffic Light Control

Embedding Automated Planning
within Urban Traffic Management Operations

Thomas L. McCluskey and Mauro Vallati

School of Computing and Engineering
University of Huddersfield, UK
{tLmecluskey.m.vallati} @hud.ac.uk

Abstract

This paper is an experience report on the results of an
industry-led collaborative project aimed at automating the
control of traffic flow within a large city centre. A major focus
of the automation was to deal with abnormal or unexpected
events such as roadworks, road closures or excessive demand,
resulting in periods of saturation of the network within some
region of the city. We describe the resulting system which
works by sourcing and semantically enriching urban traffic
data, and uses the derived knowledge as input to an auto-
mated planning component to generate light signal control
strategies in real time. This paper reports on the development
surrounding the planning component, and in particular the
engineering. configuration and validation issues that arose in
the application. It discusses a range of lessons leamed from
the experience of deploying automated planning in the road
transport area, under the direction of transport operators and
technology developers.

Introduction
Traffic Operators use traffic control systems in large urban

level of data integration. We aim to make UTMC systems
less brittle and more adaptable by raising the level of traffic
control software integration via semantic component inter-
operability. In doing this we have the longer-time aim of
utilising an autonomic approach to UTMC in particular, and
road transport support in general, as developed in the EU’s
transport network ARTS ! Results of the Network supported
the idea of the construction of a semantic systems level for
UTMC, consistent with previous work on integrating deci-
sion support within semantic technologies(Blomqvist 2014;
Antunes, Freire, and Costa 2016). Among the benefits of a
higher level of information integration are a more joined up
UTMC capability. where the flexibility of a knowledge level
representation gives the opportunity to use general Al tech-
niques such as automated planning to provide a more intel-
ligent approach to tackle UTMC issues.

‘Within this context, we present a novel AI Planning ap-
plication addressing a well known functional drawback of
established UTMC tools referred to above: they do not work
adequately in the face of exceptional or unexpected condi-
tions affecting urban regions (containing many hundreds or

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25
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Abstrac

has a strong incentive to improve its traditional operations and
o b sies€ st el el kG oo, T alowe 3 el
efficiency, reduced cost roved qulit. and salety by removing personnel ot of harn's
way. The use i these upcoming platforms, is relevant
for Inspection and Maintenance (I&M) operations. Traditionally, UGV are used only for pre-
defined tasks and have no capabilities for replanning, if a new task is required or any unexpected
event occurs. This paper presents a novel concept for 1&M operatior
he antomated planner is based on a temporal planning algorithm, and considers
actions related to, for example, visiting a specific waypoint, Inspect a sensor or manipulate an
actuntor. Also,the proposed system allows t parfort replaning n case of any specifclocation
In addition,

1danoe wavigation and control system, which has path following and control
apabilfc; T stes the pertormance of he propoect ysiem, e cae for LEM opeeations

o board of an il an gas platform was similated and promistag restls were obtained.

Copyrig 3 The Authors. This is an open access artcle under the CC BY-NC-ND license
(htips: e re/licenses/by-ne-ndd.0)

Keyuonds: Automated planning, maintenance and inspection, ol and gas platform, unmanned
ground vehicle

1. INTRODUCTION « periodic or on-demand acoustic ispection using di-
rectional sound looking for anomalies or vibrations;

Offshore oil and gas platforms arc often located in remote ~ thermal (using infrared) inspection of electrical equip-

and distant places and may pose a challenging environ- ment, process equipment and heated surfaces to look

‘ment for pcmmm‘l due to the exposure to potential haz- for leaks, anomalics in temperature;

ardous or harmful chemicals, work in areas exposed for o thermal (using infrared) for dctwlon of small (fugi-

weather and on ;mml.ler installations with hydrocarbons tive) gas leaks and montoring of ¢
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Fig. 2. Algorithm flow chart of proposed system

The 3D model and plant deseription was recently released
under open-source license by Equinor! for research and
imnovation developments. In order to perform mumerical

the plant was simplified as can be seen in
Fig. Sb, sdditionally s Gasebo map was eroated 1 Fig. 30
to perform simulations in ROS, where 1 grid map is equal
to Im.

3.2 Vehicle: Turtlebot3 UGV

Fig. 3. (a) Huldra oil and gas offshore platform (Courtesy
of Equinor), (b) Upper-layer of Huldra, (c) Simplified
R

S gazebo map.
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Abstract

Defining financial goals and formulating actionable plans to
achieve them are essential components for ensuring financial
health. This task is computationally challenging, given the
abundance of factors that can influence one’s financial situ-
ation. In this paper, we present the Personal Finance Planner
(PFP), which can generate personalized financial plans that
consider a person’s context and the likelihood of taking
financially related actions to help them achieve their goals.
PFP solves the problem in two stages. First, it uses heuristic
search to find a high-level sequence of actions that increase
the income and reduce spending to help users achieve their
financial goals. Next, it uses integer linear programming to
determine the best low-level actions to implement the high-
Ievel plan. Results show that PP is able to scale on generat-
ing realistic financial plans for complex tasks involving many
Tow level actions and long planning horizons.

Introduction
setting financial goals and planning ahead are crucial for
«chieving financial health whether for individuals, house-
10lds or companies. For individuals. financial planning in-

do not provide detailed solutions (i.e., plans with monthly
actions). They also do not consider the feasibility of the
recommended plans based on the user financial habits.

In this paper we present the Personal Finance Planner
(PFP), which generates realistic plans that achieve users’
financial goals. Due to the large action space, (i.e., there is a
potentially great number of income and expenses sources),
PFP solves the problem hierarchically in two stages, by ex-
ploiting the task’s structure. First, it uses heuristic search to
find a high-level sequence of income increase and spending
decrease actions at each month that achieve the financial
goal. Then, it uses integer linear programming (ILP) to
decide how to implement the prescribed high-level plan by
composing the right low-level actions to be applied at each
month. In this paper, we primarily focus on personal finance
planning. But our framework can also be applied to assist
with financial planning tasks for households and companies.

Financial Planning Tasks

‘We aim to find realistic plans that allow users to transit
from their current financial state to a state that fulfills their

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25
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Abstraci—In ASAPP, a company that offers Al solutions to
enterprise customers, internal mrwices s data from our
* web APIs. i intaining integra-

tions between our customers’ APIs and internal services is a
major effort for the company. In this paper, we present a scalable
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Introduction
setting financial goals and planning
«chieving financial health whether f
10lds or companies. For individuals.

for integrating web APIs in enterprise software that

is lightweight and semi-automatic. It leverages a combination of
Ontology-Based Data Access architectures (OBDA), a Domain
Specific Language (DSL) called IBL, Natural Language Pro-
cessing (NLP) models, and /Automated Planning techniques. The
OBDA architecture decouples our platform from our customers’
APIs via an ontology that acts as a single internal data access
point. IBL is a functional and graphical DSL that enables
domain experts to implement integrations, even if they don’t have
software development expertise. To reduce the effort of manually
writing the IBL code, an NLP model suggests correspondences
from each web API to the ontology. Given the API, ontology, and
selected mappings for a set of desired fields from the ontology,
we define an Automated Planning problem. The resulting policy
is finally fed to a code synthesizer that generates the appropriate
IBL method i ing the desired i

This approach has been in production in ASAPP for 2 years
with more than 300 integrations already implemented. Results
reduction_in_effort_due to implementing
. Preliminary results on the IBL automatic
code generation show an encouraging further =~ 25% reduction
so far.

I. INTRODUCTION

The process of exchanging heterogeneous data between
multiple systems is known as integration [29]. The exchange
consists of con\umlng structured data under a scurce

schema and i a taraet schema that reflects the

In this paper, we present a lightweight and semi-automated
approach to integrating web APIs, with a focus on reducing
the time and effort required. The approach was designed based
on constraints observed at ASAPP, an Al company that sells
products and services to enterprise customers. We model our
approach to meet the following desired aitributes:

a) The approach should enable complete decoupling be-
tween internal systems and customers” APIs
It should enable domain experts, who may not be pro-
fessional software developers, to specify the mapping
and allow for editing of high-level source code when
necessary
It should allow for integrations to be exhaustively tested
or proven correct before deployment.
To honor these constraints, we first design our approach
around an Ontology-Based Data Access (OBDA) architecture.
Ontology-Based Data Access (OBDA) is a common strategy
for integrating data stored in databases [36]. OBDA provides
access to heterogeneous data through the mediation of a single
ontology that end users can query. A mapping specifies how
to reconstruct the data stored in the sources in terms of this
ontology. Leveraging on the mapping, OBDA implementations
can automatically rewrite a query issued on the ontology into
queries against the respective source table(s). We adapted the
approach to the web API domain.

We then leverage a machine-learning model that suggests
candidate mappings between S (the web API) and 7 (the
ontology). In addition, we introduce the Integrations Block

b

2
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Research Note
Narrative Planning: Compilations to Classical Planning
Patrik Haslum

Australian National University, Canberra
and Optimisation Research Group, NICTA

PATRIK.HASLUM@ ANU.EDU.AU

Abstract
A model of story generation recently proposed by Riedl and Young casts it as planning, with
the additional condition that story characters behave intentionally. This means that characters have
perceivable motivation for the actions they take. I show that this condition can be compiled away (in
more ways than one) to produce a classical planning problem that can be solved by an off-the-shelf
classical planner, more efficiently than by Riedl and Young’s specialised planner.

1. Introduction

The classical AI planning model, which assumes that actions are deterministic and that the planner
has complete knowledge of and control over the world, is often thought to be too restricted, in that
many potential applications problems appear to have requirements that do not fit in this model. Re-
cently, however, it has been shown that some problems thought to go beyond the classical model can
nevertheless be solved by classical nlanners bv means of comnilation. i.e.. a svstematic remodelling
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Part 2: Classical Planning: Languages

Motivation

[ State Models and Search

Planning Languages
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State Models & Plans
State Models S = (S, sg, S, Act, A, f, ¢)

finite and discrete state space S

a known initial state sy € S

a set Sg C S of goal states

a set Act of actions

subsets of actions A(s) C Act applicable in each s € S

a (deterministic) transition function s’ = f(a,s), a € A(s)
positive action costs c(a, $)
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State Models & Plans

State Models S = (S, sg, S, Act, A, f, ¢)

finite and discrete state space S

a known initial state sy € S

a set Sg C S of goal states

a set Act of actions

subsets of actions A(s) C Act applicable in each s € S

a (deterministic) transition function s’ = f(a,s), a € A(s)
positive action costs c(a, $)

Solution Plan o: sequence of applicable actions ay, ..., a, that reaches Sg

There must be states sg, ..., Sp4+1 such that:
so is the initial state and s,41 € Sg is a goal state; and
Sit1 = f(ai, Si), a; € A(Sz‘), fori =0,...,n:
A plan is optimal if it minimizes the sum of action costs _,_ , c(a;, si).
If costs are all 1, plan cost is plan length.
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Classical Planning: Assumptions

GEEEIEINENNIE] makes several assumptions about state models (underlined):

Static vs Dynamic: agent is the only actor in the world.
Deterministic vs Stochastic: actions have deterministic effects.
Instantaneous vs temporal: actions happy instantaneous.

Fully Observable vs Partially Observable: agent knows the state of the world.

Discrete vs Numeric: state space is finite and discrete.
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State Models: Variations

Other types of state models obtained by relaxing restriction:

Markov Decision Processes: state transition probabilities P,(s’ | s) and full obs
Partially Observable MDPs (POMDPs): P,(s’ | s and sensor model P,(o0 | s), 0 € Q
Fully Observable Non-Det (FOND) Models: set of successor states s’ € F(a, s)
Partially Observable Non-Det (POND) Models: F(a,s) and sensor model o(s) €
Conformant Models: uncertain Sy and F'(a, s), and no feedback,

Continuous Models: infinite state space; e.g., represent velocity and continous
processes like filling a bucket.

In presence of uncertainty, feedback is critical.
Solution form depends on feedback: open loop vs closed-loop control.

Our classical state models S are the simplest: sg known, deterministic, known
dynamics f(a, s), no feedback; solutions are action sequences (open loop).
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State Model Variations: Example

® Agent, at lower-left corner, aims to find the gold, p )})mm AN
while avoiding falling in a pit or meeting the STERRl _
wumpus. i K m PIT =
Wumpus Sieneh
¢ Positions of pits, gold, and wumpus, however, not
known, but agent can sense presence of pit or 5 ???m??? Zareew—
Wumpus when at distance 1 stench
* How to model problem? 1 8 SN B
Agent
® What's a solution? How to find it? 1 2 3 4

By Eshika Shah - “Wumpus World in Al”
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Examples of our basic, deterministic state models

Model these problems as state models; i.e. fill the 7 bullets of definition

[ 2

Iy

[l 2

[l 2

Navigation: agent moves in n X m grid with some cells blocked.

15-puzzle: sliding tiles in empty slot to get tiles 1 to 15 ordered.

Blocks world: arm picks “clear” blocks from table or other blocks; reach target config.
Delivery: n packages in grid must be picked & delivered to target cell.; one at a time.
Missionaries and Cannibals: 3 Ms + 3 Cs to cross river using boat for 2; cannibals
can’'t be outnumbered in either bench at risk of being converted.

TSP: travelling salesman problem; min-cost tour that visits each node of a graph once
Applications: GPS, Video Games, ...; matrix multiplication algorithms that minimize #
of operations wrt standard algorithms (Deep Mind 2022; Speck et al. 2023)

States models sometimes called also search models, problem spaces, ..

In general, S given by state variables z1, .., 5 and their domains D, .., Dy.
Number of states |.S| bounded by cross-product |D;| x |Da| X -+ x |D,]; not all states
reachable with actions from sg.

Model adequate if (opt) solutions to model represent (opt) solutions to problem.
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Examples: Navigation

What is the state model S = (S, s¢, Sg, Act, A, f,¢)?

® Agent moves in n X m grid.

s € S: agent locations s = (z,y); bottom left is (0,0) * Some cells blocked.

G

Single state variable, x1, representing agent location with
n X m values (z,y) in Dj.
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Examples: Navigation

What is the state model S = (S, s¢, Sg, Act, A, f,¢)?

® Agent moves in n X m grid.

s € S: agent locations s = (z,y); bottom left is (0,0) * Some cells blocked.

so: initial location (xg,yo) = (0,0)

G

Single state variable, x1, representing agent location with
n X m values (z,y) in Dj.
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Examples: Navigation

What is the state model S = (S, s¢, Sg, Act, A, f,¢)?

® Agent moves in n X m grid.
® Some cells blocked.

s € S: agent locations s = (x,y); bottom left is (0, 0)
so: initial location (zo,yo) = (0,0)
Sq: set of target locations

Single state variable, x1, representing agent location with
n X m values (z,y) in Dj.
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Examples: Navigation

' — . Act. /£ ?
What is the state model S = (S, s¢, Sg, Act, A, f, )" o Agent moves in 1 x m grid.
® Some cells blocked.

s € S: agent locations s = (x,y); bottom left is (0, 0)
so: initial location (zo,yo) = (0,0)

Sq: set of target locations

Act: up, down, right, left

G

Single state variable, x1, representing agent location with
n X m values (z,y) in Dj.
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Examples: Navigation

' — . Act. / ?
What is the state model S = (S, s¢, Sg, Act, A, f, )" o Agent moves in 1 x m grid.

® Some cells blocked.

s € S: agent locations s = (x,y); bottom left is (0, 0)
so: initial location (zo,yo) = (0,0)

Sq: set of target locations

Act: up, down, right, left

A(s) includes up if cell (z,y + 1) for s = (x,y) is -

traversable; it includes left if ..

Single state variable, x1, representing agent location with I
n X m values (z,y) in Dj. .
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Examples: Navigation

' — . Act. / ?
What is the state model S = (S, s¢, Sg, Act, A, f, )" o Agent moves in 1 x m grid.

® Some cells blocked.

s € S: agent locations s = (x,y); bottom left is (0, 0)
so: initial location (zo,yo) = (0,0)

Sq: set of target locations

Act: up, down, right, left

A(s) includes up if cell (z,y + 1) for s = (x,y) is -

traversable; it includes left if ..
@A s = f(up,s)if s =(z,y+1) and s = (2,y), ..

Single state variable, x1, representing agent location with I
n X m values (z,y) in Dj. .
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Examples: Navigation

What is the state model S = (S, s¢, Sg, Act, A, f,¢)? o Agent moves in 1 x m grid.
® Some cells blocked.

s € S: agent locations s = (x,y); bottom left is (0, 0)
so: initial location (zo,yo) = (0,0)

Sq: set of target locations

Act: up, down, right, left

A(s) includes up if cell (z,y + 1) for s = (x,y) is -

traversable; it includes left if ..
@A s = f(up,s)if s =(z,y+1) and s = (2,y), ..
c(a,s) =1

Single state variable, x1, representing agent location with I
n X m values (z,y) in Dj. .
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Example: 15-puzzle

What is the state model S = (S, so, S, Act, A, f,c)?

s € S: a 16-tuple of unique values 0,...,15 (0 is “blank”).

sp: (15,2,1,12,8,...); entry [ at pos. t encodes loc(t) =1

S singleton state (1,2,3,4,5,...,0)

Act: up, down, right, left (moving the “blank™)

A(s) includes up if location above blank in s, loc(0), in
board

@ s’ = f(up,s) is s is like s but with positions of blank and
tile above blank, swapped; similar for down, left, ..

c(a,s) =1

Reach ordered configuration

(1,2,34,.)

Can move the “blank” tile
up, down, left, right.

15

2

1

12

5

6

11

9

10

7

14

13

® The state variables x; are loc(t), t = 0,...,16; domain D; = {0,...,15}
© |S| not |Dg| x |Dy| x --- x |D15| but 16! (16 Factorial). Why?

© Alternative state model?
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Example: (Oh no it's) The Blocksworld &

3 Robot arm picks “clear” blocks from table or
o] from other blocks, and place them on table or
..I I on other blocks. Each block has a unique ID.
Initial Stat Goal
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Example: (Oh no it's) The Blocksworld &

EE

Initial State

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = (S, s¢, Sg, Act, A, f,¢)?

What is the state model S = (S, so, Sg, Act, A, f,c)?
s € S: assigns location to each block b: loc(b) can be another block, table, gripper.
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Example: (Oh no it's) The Blocksworld &

"
EE

Initial State Goal

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = (S, s¢, Sg, Act, A, f,¢)?

What is the state model S = (S, so, Sg, Act, A, f,c)?

s € S: assigns location to each block b: loc(b) can be another block, table, gripper.
so: given initial state such that loc(A) = loc(B) = loc(C') = table; loc(D) = C'.
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Example: (Oh no it's) The Blocksworld &

"
EE

Initial State Goal

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = (S, s¢, Sg, Act, A, f,¢)?

What is the state model S = (S, so, Sg, Act, A, f,c)?
s € S: assigns location to each block b: loc(b) can be another block, table, gripper.
so: given initial state such that loc(A) = loc(B) = loc(C') = table; loc(D) = C'.
Sa: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
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Example: (Oh no it's) The Blocksworld &

"
EE

Initial State Goal

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = (S, s¢, Sg, Act, A, f,¢)?

What is the state model S = (S, so, Sg, Act, A, f,c)?
s € S: assigns location to each block b: loc(b) can be another block, table, gripper.
so: given initial state such that loc(A) = loc(B) = loc(C') = table; loc(D) = C'.
Sa: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
Act: pick block b, place block being held onto block b or table
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Example: (Oh no it's) The Blocksworld &

"
EE

Initial State Goal

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = (S, s¢, Sg, Act, A, f,¢)?

What is the state model S = (S, so, Sg, Act, A, f,c)?
s € S: assigns location to each block b: loc(b) can be another block, table, gripper.
so: given initial state such that loc(A) = loc(B) = loc(C') = table; loc(D) = C'.
Sa: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
Act: pick block b, place block being held onto block b or table
A(s) includes pick(B) if loc(z) # B and loc(z) # gripper for all blocks x # B
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Example: (Oh no it's) The Blocksworld &

"
EE

Initial State Goal

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = (S, s¢, Sg, Act, A, f,¢)?

What is the state model S = (S, so, Sg, Act, A, f,c)?

s € S: assigns location to each block b: loc(b) can be another block, table, gripper.
so: given initial state such that loc(A) = loc(B) = loc(C') = table; loc(D) = C'.
Sa: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D

Act: pick block b, place block being held onto block b or table

A(s) includes pick(B) if loc(z) # B and loc(z) # gripper for all blocks x # B

@A s = f(pickup(zx),s) is like s but with loc(z) set to gripper.
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Example: (Oh no it's) The Blocksworld &

"
EE

Initial State Goal

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = (S, s¢, Sg, Act, A, f,¢)?

What is the state model S = (S, so, Sg, Act, A, f,c)?
s € S: assigns location to each block b: loc(b) can be another block, table, gripper.

~HoRoN-~NoE|

cla,s) =1

so: given initial state such that loc(A) = loc(B) = loc(C') = table; loc(D) = C'.
Sa: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
Act: pick block b, place block being held onto block b or table

A(s) includes pick(B) if loc(z) # B and loc(z) # gripper for all blocks x # B
s' = f(pickup(z), s) is like s but with loc(z) set to gripper.
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Initial State Goal

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.
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so: given initial state such that loc(A) = loc(B) = loc(C') = table; loc(D) = C'.
Sa: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
Act: pick block b, place block being held onto block b or table

A(s) includes pick(B) if loc(z) # B and loc(z) # gripper for all blocks x # B
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Example: (Oh no it's) The Blocksworld &

"
EE

Initial State Goal

Robot arm picks “clear” blocks from table or
from other blocks, and place them on table or
on other blocks. Each block has a unique ID.

What is the state model S = (S, s¢, Sg, Act, A, f,¢)?

What is the state model S = (S, so, Sg, Act, A, f,c)?
s € S: assigns location to each block b: loc(b) can be another block, table, gripper.

~HoRoN-~NoE|

cla,s) =1

so: given initial state such that loc(A) = loc(B) = loc(C') = table; loc(D) = C'.
Sa: where loc(A) = loc(D) = table, loc(C) = A, loc(E) = C, loc(B) = D
Act: pick block b, place block being held onto block b or table

A(s) includes pick(B) if loc(z) # B and loc(z) # gripper for all blocks x # B
s' = f(pickup(z), s) is like s but with loc(z) set to gripper.

© How many states? Not all assignments loc(b) = v reachable; state invariants (which?)
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Example: Delivery/Driverlog

Agent must move and pick packages spread in an n X m grid, and take them one by one, to
the target cells.

What is the state model S = (S, s¢, Sg, Act, A, f,¢)?

s € S: location of agent and packages; loc(a), loc(pkg)

Sp: given

Sa: loc(pkg) = target for all packages pkg :ﬁ
Act: pick(pkg), drop(pkg), moves up, down, left, right %
A(s) includes pick(pkg) if loc(pkg) = loc(a), and agent hand empty, ...

@A s’ = f(pick(pkg), s) is like s but loc(pkg) changes to agent, ...

cla,s) =1

© Number of states is exponential, but exponential on what?
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Example: River crossing puzzle

A farmer needs to cross a river with a goat, a wolf, and
a cabbage. His boat can only carry one item at a time.
The goat cannot be left alone with the cabbage (the
goat will eat the cabbage!). The goat cannot be left
alone with the wolf (the wolf will eat the goat!)

Model problem as a state model S = (S, so, S, Act, A, f, ¢).

® s € S: contains x;, x, € {0,1}, for x € {cabbage, goat, boat, wol f }
® 39, Sq, Act, ..
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https://www.mindyourlogic.com/river-crossing-puzzles/goat-wolf-cabbage-river-crossing-puzzle

Example: River crossing puzzle

A farmer needs to cross a river with a goat, a wolf, and
a cabbage. His boat can only carry one item at a time.
The goat cannot be left alone with the cabbage (the
goat will eat the cabbage!). The goat cannot be left
alone with the wolf (the wolf will eat the goat!)

Model problem as a state model S = (S, so, S, Act, A, f, ¢).

® s € S: contains x;, x, € {0,1}, for x € {cabbage, goat, boat, wol f }
® 39, Sq, Act, ..

@ Constraint that “cabbage should not be left alone with the goat” is not a state invariant
(true no matter what actions are taken); but a constraint to be enforced!

© What about make A(s) empty if s does not satisfy the constraint (making s a dead-end)?
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Computation: How to solve (deterministic) state models?

® State model S defines directed graph G(S) with nodes n that represent states
s = s(n), and labeled edges that represent state transitions:
> root node ng in G(S) represents initial state s(ng) = so

> target nodes n¢ represent the goal states s(n) C Sg

> labeled edge n —, n’ if s(n) = f(a, s) for a € A(s), s = s(n).
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Computation: How to solve (deterministic) state models?

® State model S defines directed graph G(S) with nodes n that represent states
s = s(n), and labeled edges that represent state transitions:
> root node ng in G(S) represents initial state s(ng) = so

> target nodes n¢ represent the goal states s(n) C Sg

> labeled edge n —, n’ if s(n) = f(a, s) for a € A(s), s = s(n).

* Finding a solution to state model S becomes finding a path in graph G(S)
connecting nodes representing initial states and goal states.

e While any path-finding algorithms for graphs could be used for solving state models, few
scale up to very large graphs (billions of nodes!).

A\ Size of state models and graphs is exponential in the number of state variables.
» Models and graphs not given explicitly but implicitly.
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Search Algorithms for Path Finding in Directed Graphs

Blind search/Brute force algorithms

Goal plays passive role in the search.

Informed /Heuristic Search Algorithms

Goals plays active role in the search through heuristic function h(s) that estimates cost
from s to the goal.

® Heuristic h is said admissible if i(s) < h*(s) for all s where h* is optimal cost from s
to goal. That is, h is an optimistic estimate, or alternatively, a lower bound over cost.
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Search Algorithms for Path Finding in Directed Graphs

Blind search/Brute force algorithms

Goal plays passive role in the search.

= e.g., Depth First Search (DFS), Breadth-first search (BrFS), Uniform Cost (Dijkstra),
Iterative Deepening (ID), Iterative Width (IW)

Informed /Heuristic Search Algorithms

Goals plays active role in the search through heuristic function h(s) that estimates cost
from s to the goal.

® Heuristic h is said admissible if h(s) < h*(s) for all s where h* is optimal cost from s
to goal. That is, h is an optimistic estimate, or alternatively, a lower bound over cost.

= e.g., A* IDA* Hill Climbing, Best First, DFS B&B, LRTA*, ...
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Basic General Search Scheme (reviwe)

Solve(G: Graph, Init: State; Goals: Set Nodes)

Open := {(Init, g:0, f£:0, p:None)}; Closed := {}
WHILE Open is not empty DO

Node := *Select-Node* from Open and move it to Closed

IF Node is Goal THEN RETURN Solution

IF s(Node) is not in Closed THEN

FOR EVERY Child in *Expand-Node* Node DO // Child = (s, g, f, p)
*Add-node* Child node to Open

RETURN Fail

* Nodes n are data structures that track state s(n) + bookkeeping info.
* Bookkeeping for n includes labeled pointer to parent and accummulated cost g(n)

» g(n) = c(a,n’) + g(n') where n' is parent of n, a is action label
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Basic General Search Scheme (reviwe)

Solve(G: Graph, Init: State; Goals: Set Nodes)

Open := {(Init, g:0, f£:0, p:None)}; Closed := {}
WHILE Open is not empty DO

Node := *Select-Node* from Open and move it to Closed

IF Node is Goal THEN RETURN Solution

IF s(Node) is not in Closed THEN

FOR EVERY Child in *Expand-Node* Node DO // Child = (s, g, f, p)
*Add-node* Child node to Open

RETURN Fail

* Nodes n are data structures that track state s(n) + bookkeeping info.
* Bookkeeping for n includes labeled pointer to parent and accummulated cost g(n)

» g(n) = c(a,n’) + g(n') where n' is parent of n, a is action label
* Duplicate nodes are nodes n and n’ that represent the same state s(n) = s(n’)
» They are avoided, except in depth-first search and tree-search algorithms
» For this, newly generated node n pruned if duplicate of n’ and g(n') < g(n)
> Yet if duplicate and g(n) < g(n’), n’ pruned instead (important! why?)
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One basic schema, many different search algorithms

¢ Different search algorithms obtained by different choices of node to expand from
Open given by:
> Select-Node Open

» Add-Nodes New Old Open
® Why to consider different algorithms? Because different properties:
» Completeness: guaranteed to find a solution if one exists.
» Optimality: guaranteed to find an optimal solution if one exists.
> Space complexity: memory used by algorithm.

» Time complexity: time used by algorithm.
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Some instances of general search scheme

® Depth-First Search expands ‘deepest’ nodes n first
» Select-Node Open: Select First Node in Open

» Add-Nodes New Old: Puts New before Old
» Implementation: Open as a Stack (LIFO)

» Cycle checking: prune Child in New if duplicate of ancestor

* Breadth-First Search expands ‘shallowest’ nodes n first
> Select-Node Open: Selects First Node in Open

» Add-Nodes New Old: Puts New after Old

» Implementation: Open as a Queue (FIFO)
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Heuristic search and heuristic functions

e Heuristic search algorithms use two functions:
> g(n): accumulated cost from root to node n in OPEN

» h(n): estimated cost from state s(n) represented by n to goal

® Heuristic function h(n) provides the search with a sense of direction
> Quick and rough approximation of cost from s(n) to goal
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Heuristic search and heuristic functions

e Heuristic search algorithms use two functions:
> g(n): accumulated cost from root to node n in OPEN

» h(n): estimated cost from state s(n) represented by n to goal

® Heuristic function h(n) provides the search with a sense of direction
> Quick and rough approximation of cost from s(n) to goal

e Simple but useful heuristic functions i(n):
> Navigation: Manhattan distance (ignores blocked cells)
» 15-puzzle: Sum of Manhattan distances (ignores interactions)

» Blocks: Twice number of blocks sitting on different block in goal

> Delivery: Sum of Manhattan distances, ..
* A heuristic h is admissible if h(n) < h*(n) for all nodes n (states)

e Which heuristics above are admissible? Why?
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Simplest heuristic search algorithm (not too good though)

Greedy search or Hill climbing (descending) search

Starting with s = s,

Evaluate each action a € A(s) as: Q(a,s) = c(a, s) + h(s'), where s = f(a, s)
Apply action a that minimizes Q(a, s)

Exit if s’ is goal, else go to 1 with s := s’

Greedy search is incomplete, even if extended with cycle checking. Yet:

v It uses constant memory (if no cycle checks); or linear memory (cycle checks)

v/ It's a “real-time" algorithm; i.e., there is notion of current state
v/ There is a simple way to fix incompleteness and non-optimality (!)

» Update the heuristic function i of parent when moving to child
» Resulting algorithm is Learning Real Time A* (LRTA¥*)
> LRTA* generalizes nicely to MDPs! (RTDP)
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Back to the general search scheme

Best First Search expands best nodes n with min f(n) (f(n) is the evaluation function)

® Select-Node Open: Returns node n in Open with min f(n)
® Add-Nodes New Old: Performs ordered merge
¢ Implementation: Open as Priority Queue

® Special cases
» Uniform cost/Dijkstra: f(n) = g(n)
> A% f(n) = g(n) + h(n)
> WA*: f(n)=g(n)+Wh(n), W>1
> Greedy Best First: f(n) = h(n) (different than greedy search)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 83/248



Memory. Properties. Consistency

* All algorithms except DFS and its variants (below) store all nodes in memory.
® When nodes expanded, children looked up in Open and Closed “lists”.
¢ Duplicates prevented; only cheapest “copy” kept.

» Newly generated node n pruned, if there is a node n’ in OPEN or CLOSED that represents
same state s as n such that g(n) £ g(n’).

» Yet, n’ pruned instead if g(n) < g(n’) (“reopened” if n” CLOSED)

A* Good Properties

v A* is optimal, yields cheapest solutions, if i admissible.

v/ A* is optimal also in following sense: no other algorithm expands less # of nodes than
A* with same heuristic function (this doesn’t mean that A* is fastest!).

v/ A* expands ‘less’ # of nodes with more informed heuristic: hy more informed that hy
if 0 < hi(s) < ha(s) < h*(s), for all s.

v/ A* won't re-open nodes if heuristic is consistent (monotonic); i.e.,
h(n) < ¢(n,n’) 4+ h(n’) for child n’ of n (f doesn't decrease along any path).
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Variants of Depth-First Search (DFS)
Bounded DFS

¢ Like normal DFS but uses a bound B on solution cost
* Node n pruned (not added to OPEN), if g(n) > B
® Incomplete if no solution with cost < B

Iterative Deepening (ID)

e Calls Bounded DFS with bound B; = 0 in first iteration

* Node n pruned in iteration i if g(n) > B;

* If no solution found in iteration i, Bounded DFS called with bound B, = miny g(ng),
over nodes nj pruned in iteration %

Iterative Deepening A* (IDA¥*)

* Like ID but uses evaluation function f(n) = g(n) + h(n) instead of g(n)
* Node n pruned in iteration ¢ if f(n) = g(n)+ h(n) > B;
® By = h(ng) and B;y; = ming f(ng), over nodes ny pruned in iteration 4
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Properties of Algorithms

Completeness: whether guaranteed to find solution
Optimality: whether solution guaranteed optimal
Time Complexity: how time increases with size

Space Complexity: how space increases with size

DFS | BrFS | ID A* | HC | IDA* | B&B
Complete || Yes* | Yes | Yes || Yes | No | Yes Yes
Optimal No | Yes* | Yes || Yes | No | Yes Yes
Time bP b? be b | oo b? bP
Space b-d e b-d | v? b b-d | b-d

— Parameters: d is optimal solution depth; b is branching factor; D >> d

— BrFS optimal when costs are uniform; DFS complete with cyclic checking

— A*/IDA* optimal when h is admissible; h < h*
— B&B refers to Depth-first search Branch-and-Bound ..
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Practical Issues: Search in Large Spaces

Exponential-memory algorithms like A* not feasible in very large spaces.
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Practical Issues: Search in Large Spaces

Exponential-memory algorithms like A* not feasible in very large spaces.

Time and memory requirements can be lowered significantly by multiplying heuristic
term h(n) by a constant W > 1 (WA* — Weighted A*).
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Practical Issues: Search in Large Spaces

Exponential-memory algorithms like A* not feasible in very large spaces.

Time and memory requirements can be lowered significantly by multiplying heuristic
term h(n) by a constant W > 1 (WA* — Weighted A*).

» Solutions no longer optimal but at most W times from optimal (if h admissible).
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Practical Issues: Search in Large Spaces
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term h(n) by a constant W > 1 (WA* — Weighted A*).

» Solutions no longer optimal but at most W times from optimal (if h admissible).

For very large spaces, only feasible optimal algorithms are linear-memory algorithms
such as IDA* and B&B.

Optimal solutions have been reported to problems with huge state spaces such
24-puzzle, Rubik's cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 10?0, using IDA* and
pattern-database heuristics.
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such as IDA* and B&B.

Optimal solutions have been reported to problems with huge state spaces such
24-puzzle, Rubik's cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 10?0, using IDA* and
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Recent developments combine deep reinforcement learning with search: learn
value/heuristic functions, learn policies, learn general policies, ..
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Practical Issues: Search in Large Spaces

Exponential-memory algorithms like A* not feasible in very large spaces.

Time and memory requirements can be lowered significantly by multiplying heuristic
term h(n) by a constant W > 1 (WA* — Weighted A*).

» Solutions no longer optimal but at most W times from optimal (if h admissible).

For very large spaces, only feasible optimal algorithms are linear-memory algorithms
such as IDA* and B&B.

Optimal solutions have been reported to problems with huge state spaces such
24-puzzle, Rubik's cube, and Sokoban (Korf, Schaeffer); e.g. |S| > 10?0, using IDA* and
pattern-database heuristics.

Recent developments combine deep reinforcement learning with search: learn
value/heuristic functions, learn policies, learn general policies, ..

[@ Resulting solutions not necessarily optimal though (or not easy to prove so).
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Learning Real Time A* (LRTA%*)

® LRTA* is a very interesting real-time search algorithm (Korf 90)
® It's like a hill-descending or greedy search, but it updates the heuristic V' as it moves,
starting with V' = h.

Evaluate each action a in s as: Q(a,s) = c(a, s) + V(s)
Apply action a that minimizes Q(a, s)

Update V (s) to Q(a, s)

Exit if s’ is goal, else go to 1 with s:= 5’

® Two remarkable properties
» Each trial of LRTA gets eventually to the goal if space connected

» Repeated trials eventually get to the goal optimally, if 2~ admissible!

® Generalizes well to stochastic actions (MDPs): RTDP
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lterative Width: IW

* IW(k) and IW are exploration algorithms (no heuristic k) that make use of the state
structure as given by set of Boolean state features F' = {fi,..., fx}

> IW(1) is just breadth-first search that prunes states s that don't make a feature f; true
for first time in the search

> IW(k) is IW(1) but over set F¥ made up of conjunctions of k features from F
» IW(k) expands up to N* nodes and runs in polytime exp(2k)
> IW runs IW(1), IW(2), .., IW(E) sequentially until problem solved ...

e |W is blind like DFS, BrFS, and ID but enumerates state space differently

® Many domains with exponential state space provably solved in polynomial time by
IW when using “natural” features

> Goals like on(bl, b2) in Blocks solvable by IW(2) if F' captures locations and clear status of
blocks (Lipovetzky and G. 2012)

> Idea, width-based search, used in state-of-the-art classical planning algorithms
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Heuristics: where they come from? (£

General idea for obtaining heuristics

Heuristic functions obtained as optimal cost functions of relaxed problems.

® Routing Finding: Manhattan distance or straight line.
® N-puzzle: # misplaced tiles or sum of Manhattan distances.
® Travelling Salesman Problem: Spanning Tree.
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Heuristic functions obtained as optimal cost functions of relaxed problems.

® Routing Finding: Manhattan distance or straight line.
® N-puzzle: # misplaced tiles or sum of Manhattan distances.
® Travelling Salesman Problem: Spanning Tree.

I\ But:
how to get and solve suitable relaxations?

how to get heuristics automatically?
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® Routing Finding: Manhattan distance or straight line.
® N-puzzle: # misplaced tiles or sum of Manhattan distances.
® Travelling Salesman Problem: Spanning Tree.

I\ But:
how to get and solve suitable relaxations?

how to get heuristics automatically?
€ This is where (classical) planning comes to the rescue!

e state models S = (S, sy, Si, Act, A, f, c) expressed in compact form by means of
planning languages
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Part 2: Classical Planning: Languages

Motivation

[ State Models and Search

Planning Languages
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Part 2: Classical Planning: Languages

Planning Languages
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Planning

® Planning is one of the oldest areas in Al; many ideas have been tried.
» A bit of history: first Al planners from late 50s: GPS (Simon and Newell)

e A planner is a general solver that accepts a problem description of a dynamic system
and computes a solution plan.

Problem —- — Plan

Problem description encodes state model in a compact (and accessible) form.

Planning Languages for encoding state models based on fragment of FOL
» Make room for objects and relations: STRIPS, ADL, PDDL, ..
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Planning

® Planning is one of the oldest areas in Al; many ideas have been tried.
» A bit of history: first Al planners from late 50s: GPS (Simon and Newell)

e A planner is a general solver that accepts a problem description of a dynamic system
and computes a solution plan.

Problem —- — Plan

Problem description encodes state model in a compact (and accessible) form.

Planning Languages for encoding state models based on fragment of FOL
» Make room for objects and relations: STRIPS, ADL, PDDL, ..

Classical planning is “vanilla” planning:
» Known initial state and deterministic actions; discrete time, no other changes.

Other planning models relax these assumptions:
» Incomplete information on the state; non-deterministic actions; multi-agent, etc.
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State Model for Classical Al Planning

State model underlying classical planning: S = (S, s, Sq, Act, A, f, ¢) where:

e S is finite and discrete state space

® s; is known initial state sy € S

® Sg is subset of goal states, Sg C S

® Act is finite set of actions

e A(s) is subset of actions applicable in each s € S, A(s) C Act

* f is a deterministic transition function; successors s’ = f(a, s), a € A(s)

® cis a positive action cost function; ¢(a,s) > 0
A solution or plan is a sequence of applicable actions ag, . .., a, that maps sqg into Sg; i.e.
there is a state sequence sq, ..., Sp+1 such that a; € A(s;), sit1 = f(ai, si), and sp41 € Sa,
1=0,...,n.

A plan is optimal if it minimizes sum of action costs ) ,_,, c(a;, s;)
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Basic Language for Classical Planning: STRIPS

* A (grounded) FSERLITI-@EINENE in STRIPS is a
tuple P = (F,0,1,G):
> F stands for set of all atoms (boolean variables)
» O stands for set of all operators (or actions)

» [ C F stands for initial situation

» G C F stands for goal situation

® Actions or o € O represented by:
> the Add list Add(o) C F: atoms that become true

» the Delete list Del(0) C F: atoms that stop being
true (i.e., become false)

» the Precondition list Pre(o) C F: atoms that must
be true for action to apply/execute

ARTIFICIAL INTELLIGENCE 189

STRIPS: A New Approach to the
Application of Theorem Proving to
Problem Solving'

Richard E. Fikes

Nils J. Nilsson

Stanford Research Institute, Menlo Park, California
Recommended by B. Raphael

Presented at the 2nd IJCAI, Imperial College, London, England, September
1-3, 1971.

ABSTRACT

We describe a new problem solver called STRIPS that attempts to find a sequence of operators
in a spece of world modcls to transform a given initial world model into a model in which @
given goal formula can be proven to be true. STRIPS represents a world model as an arbitrary
collection of first-order predicate calculus formulas and is designed to work with models con-
sisting of large numbers of formulas. It employs a resolution theorem prover fo answer ques-
tions of particul d| s analysis to guide i to the desired goal-satisfying
model.

DESCRIPTIVE TERMS.
Problem solving, theorem proving. robot planning, heuristic search.

Stanford Research Institute
Problem Solver
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STRIPS for SRI Shakey (1966-1972)

Software [edi

Main article: Stanford Research Institute Problem Solver

The robot's programming was primarily done in LISP. The Stanford Research Institute Problem
Solver (STRIPS) planner it used was conceived as the main planning component for the software
it utilized. As the first robot that was a logical, goal-based agent, Shakey experienced a limited
world. A version of Shakey's world could contain a number of rooms connected by corridors,
with doors and light switches available for the robot to interact with.[%)

Shakey had a short list of available actions within its planner. These actions involved traveling
from one location to another, turning the light switches on and off, opening and closing the
doors, climbing up and down from rigid objects, and pushing movable objects around.[1% The
STRIPS automated planner could devise a plan to enact all the available actions, even though
Shakey himself did not have the capability to execute all the actions within the plan personally.

An example mission for Shakey might be something like, an operator types the command "push Shakeyin 1372

the block off the platform” at a computer console. Shakey looks around, identifies a platform
with a block on it, and locates a ramp in order to reach the platform. Shakey then pushes the ramp over to the platform, rolls
up the ramp onto the platform, and pushes the block off the platform.

- Shakey was inducted into Carnegie Mellon University's Robot Hall of
Check this video for a demo Fame in 2004 alongside such notables as ASIMO and C-3PO.

of Shakey's capabilities.
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https://www.sri.com/hoi/shakey-the-robot/
https://www.youtube.com/watch?v=GmU7SimFkpU
https://en.wikipedia.org/wiki/Shakey_the_robot

From Language to Models

S(P): state model of planning problem P

Problem P = (F, O, I,G) determines/induces model S(P) = (S, so, Sg, Act, A, f, c):
the states s € S are collections of atoms from F' (what is |S]?)
the initial state sq is 1
the set Sg of goal states s are those that G C s
the set of actions Act is Act = O,
the actions a in A(s) are those such that Pre(a) C s
[@ the transition function f is such that s’ = f(a,s) = (s \ Del(a)) U Add(a)
action costs c(a, s) are all 1

11 Note:

* (Optimal) Solution of P is (optimal) solution of S(P)
® Language extensions often convenient (e.g., negation and conditional effects)
» some required for describing richer models (costs, probabilities, duration, ...).
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Example: Simple Problem in STRIPS

Problem P = (F,I,0,G) where:

F = {pa q, 7’}
° I={p}
°G= {(br}
® (O has two actions a and b such that:

»> Pre(a) = {p} , Add(a) = {q}, Del(a) = {}
> Pre(b) = {q} , Add(b) = {r}, Del(b) = {q}

© Questions

How many states?
What is S(P)?

How many states are reachable from the initial state?
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(Oh no it's) The Blocksworld (again!)

&
o

Initial State Goal

® Propositions: on(x,y), onTable(x), clear(x), holding(x), armEmpty().
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&
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Initial State Goal

® Propositions: on(x,y), onTable(x), clear(x), holding(x), armEmpty().

® |nitial state:
{onTable(E), clear(E), ..., onTable(C), on(D,C), clear(D), armEmpty()}.
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(Oh no it's) The Blocksworld (again!)

Initial State Goal

® Propositions: on(x,y), onTable(x), clear(x), holding(x), armEmpty().

® |nitial state:
{onTable(E), clear(E), ..., onTable(C), on(D,C), clear(D), armEmpty()}.

® Goal: {on(E,C), on(C,A), on(B,D)}.
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(Oh no it's) The Blocksworld (again!)

Initial State Goal

® Propositions: on(x,y), onTable(x), clear(x), holding(x), armEmpty().

® |nitial state:
{onTable(E), clear(E), ..., onTable(C), on(D,C), clear(D), armEmpty()}.

Goal: {on(E,C), on(C,A), on(B,D)}.
Actions: stack(z,y), unstack(x,y), putdown(zx), pickup(x).
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(Oh no it's) The Blocksworld (again!)

Initial State Goal

® Propositions: on(x,y), onTable(x), clear(x), holding(x), armEmpty().

® |nitial state:

{onTable(E), clear(E), ..., onTable(C), on(D,C), clear(D), armEmpty()}.

® Goal: {on(E,C), on(C,A), on(B,D)}.
e Actions: stack(z,y), unstack(x,y), putdown(z), pickup(x).
& pickup(x)? - (pickup block from table)
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Initial State Goal

® Propositions: on(x,y), onTable(x), clear(x), holding(x), armEmpty().

® |nitial state:
{onTable(E), clear(E), ..., onTable(C), on(D,C), clear(D), armEmpty()}.

® Goal: {on(E,C), on(C,A), on(B,D)}.
e Actions: stack(z,y), unstack(x,y), putdown(z), pickup(x).

& pickup(x)? - (pickup block from table)
Pre: {armEmpty(), clear(x), onTable(x)}
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(Oh no it's) The Blocksworld (again!)

&

Initial State Goal

® Propositions: on(x,y), onTable(x), clear(x), holding(x), armEmpty().

® |nitial state:
{onTable(E), clear(E), ..., onTable(C), on(D,C), clear(D), armEmpty()}.

® Goal: {on(E,C), on(C,A), on(B,D)}.
e Actions: stack(z,y), unstack(x,y), putdown(z), pickup(x).

& pickup(x)? - (pickup block from table)
Pre: {armEmpty(), clear(x), onTable(x)}
Add {holding(x)}
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(Oh no it's) The Blocksworld (again!)

&

Initial State Goal

® Propositions: on(x,y), onTable(x), clear(x), holding(x), armEmpty().

® |nitial state:
{onTable(E), clear(E), ..., onTable(C), on(D,C), clear(D), armEmpty()}.

® Goal: {on(E,C), on(C,A), on(B,D)}.
e Actions: stack(z,y), unstack(x,y), putdown(z), pickup(x).
& pickup(x)? - (pickup block from table)
Pre: {armEmpty(), clear(x), onTable(x)}

Add {holding(x)}
Del {armEmpty(), clear(zx), onTable(x)}
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(Oh no it’s) The Blocksworld (operators)

S Propositions:
I B on(z,y), onTable(x), clear(x), holding(x), armEmpty()
- Goal: E A B,D
Initial State Goal o4 {077/( ’ 0)7 On(c’ )’ On( ’ )}
Action Precondition Add Delete
pickup(z) {armEmpty(), clear(z), onTable(z)}  {holding(z)} {armEmpty(), clear(z), onTable(z)}
putdown(x)

unstack(z,y)

stack(z,y)
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I B on(z,y), onTable(x), clear(x), holding(x), armEmpty()
- Goal: E.C C,A B,D
Initial State Goal o2 {On( ’ )7 0”( ’ )’ On( ’ )}
Action Precondition Add Delete
pickup(z) {armEmpty(), clear(z), onTable(z)}  {holding(z)} {armEmpty(), clear(z), onTable(z)}
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(Oh no it’s) The Blocksworld (operators)

S Propositions:
I B on(z,y), onTable(x), clear(x), holding(x), armEmpty()
- Goal: E.C C,A B,D
Initial State Goal o2 {On( ’ )7 0”( ’ )’ On( ’ )}
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(Oh no it’s) The Blocksworld (operators)

S Propositions:
ﬂ B on(z,y), onTable(x), clear(x), holding(x), armEmpty()
- Goal: EC C A B,D
Initial State Goal o2 {On( ’ )7 0”( ’ )’ On( ’ )}
Action Precondition Add Delete
pickup(z) {armEmpty(), clear(z), onTable(z)}  {holding(z)} {armEmpty(), clear(z), onTable(z)}
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unstack(z,y) {armEmpty(z), clear(x), on(z,y)} {holding(z), clear(x)} {armEmpty(), on(x,y), clear(z)}
stack(z,y)
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I B on(z,y), onTable(x), clear(x), holding(x), armEmpty()
- Goal: E.C C,A B,D
Initial State Goal o2 {On( ’ )7 On( ’ )’ On( ’ )}
Action Precondition Add Delete
pickup(z) {armEmpty(), clear(z), onTable(z)}  {holding(z)} {armEmpty(), clear(z), onTable(z)}
putdown(x) {holding(z)} {armEmpty(), clear(x), onTable(x)}  {holding(x)}
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Action Precondition Add Delete
pickup(z) {armEmpty(), clear(z), onTable(z)}  {holding(z)} {armEmpty(), clear(z), onTable(z)}
putdown(x) {holding(z)} {armEmpty(), clear(x), onTable(x)}  {holding(x)}
unstack(z,y) {armEmpty(z), clear(x), on(z,y)} {holding(z), clear(x)} {armEmpty(), on(x,y), clear(z)}
stack(z,y) {holding(z), clear(y)} {on(z,y), armEmpty(), clear(z)}
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(Oh no it’s) The Blocksworld (operators)

S Propositions:
ﬂ B on(z,y), onTable(x), clear(x), holding(x), armEmpty()
H Goal: EC C A B,D
Initial State Goal o2 {On( ’ )7 On( ’ )’ On( ’ )}
Action Precondition Add Delete
pickup(z) {armEmpty(), clear(z), onTable(z)}  {holding(z)} {armEmpty(), clear(z), onTable(z)}
putdown(x) {holding(z)} {armEmpty(), clear(x), onTable(x)}  {holding(x)}
unstack(z,y) {armEmpty(z), clear(x), on(z,y)} {holding(z), clear(x)} {armEmpty(), on(x,y), clear(z)}
stack(z,y) {holding(z), clear(y)} {on(z,y), armEmpty(), clear(z)} {holding(z), clear(y)}
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(Oh no it’s) The Blocksworld (operators)

S Propositions:
ﬂ B on(z,y), onTable(x), clear(x), holding(x), armEmpty()
ﬂ Goal: EC C A B,D
Initial State Goal o2 {On( ’ )7 On( ’ )’ On( ’ )}
Action Precondition Add Delete
pickup(z) {armEmpty(), clear(z), onTable(z)}  {holding(z)} {armEmpty(), clear(z), onTable(z)}
putdown(x) {holding(z)} {armEmpty(), clear(x), onTable(x)}  {holding(x)}
unstack(z,y) {armEmpty(z), clear(x), on(z,y)} {holding(z), clear(x)} {armEmpty(), on(x,y), clear(z)}
stack(z,y) {holding(z), clear(y)} {on(z,y), armEmpty(), clear(z)} {holding(z), clear(y)}

©® What is a successful plan for the above problem?
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(Oh no it's) The Blocksworld (plans)

&

Initial State

Propositions:
on(z,y), onTable(x), clear(z), holding(x), armEmpty()

Goal: {on(E,C), on(C,A),on(B,D)}

Goal

© What is a successful plan for the above problem?
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(Oh no it's) The Blocksworld (plans)

&

Initial State

Propositions:
on(z,y), onTable(x), clear(z), holding(x), armEmpty()

Goal: {on(E,C), on(C,A),on(B,D)}

Goal

© What is a successful plan for the above problem?

unstack(D, C), putdown(D), pickup(C), stack(C, A), pickup(B), stack(B, D), pickup(E), stack(E, C)
v
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(Oh no it’s) The Blocksworld (plans)

&

Initial State

Propositions:
on(z,y), onTable(x), clear(z), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B, D)}

Goal

© What is a successful plan for the above problem?

unstack(D, C), putdown(D), pickup(C), stack(C, A), pickup(B), stack(B, D), pickup(E), stack(E, C)
v

© What about this plan?

unstack(D, C), putdown(D), pickup(C), stack(C, A), pickup(E),
stack(E, C), pickup(D), stack(D, E), pickup(B), stack(B, D)
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(Oh no it’s) The Blocksworld (plans)

&

Initial State

Propositions:
on(z,y), onTable(x), clear(z), holding(x), armEmpty()

Goal: {on(E,C), on(C,A), on(B, D)}

Goal

© What is a successful plan for the above problem?

unstack(D, C), putdown(D), pickup(C), stack(C, A), pickup(B), stack(B, D), pickup(E), stack(E, C)
v

© What about this plan?

unstack(D, C), putdown(D), pickup(C), stack(C, A), pickup(E),
stack(E, C), pickup(D), stack(D, E), pickup(B), stack(B, D)
v
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(Oh no it's) The Blocksworld (plans)

&

Initial State

Propositions:
on(z,y), onTable(x), clear(z), holding(x), armEmpty()

Goal: {on(E,C), on(C,A),on(B,D)}

Goal

© What is a successful plan for the above problem?

unstack(D, C), putdown(D), pickup(C), stack(C, A), pickup(B), stack(B, D), pickup(E), stack(E, C)
v

© What about this plan? ﬂ

unstack(D, C), putdown(D), pickup(C), stack(C, A), pickup(E),
stack(E, C), pickup(D), stack(D, E), pickup(B), stack(B, D)
v
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(Oh no it’s) The Blocksworld (fixed!)

&

Initial State

Propositions:
on(z,y), onTable(x), clear(x), holding(x), armEmpty()

Goal: {on(E,C), on(C, A), on(B, D), onTable(A), onTable(D)

Goal

© What is a successful plan for the above problem?

unstack(D, C), putdown(D), pickup(C), stack(C, A), pickup(B), stack(B, D), pickup(E), stack(E, C)
v

© What about this plan?

unstack(D, C), putdown(D), pickup(C), stack(C, A), pickup(E),
stack(E, C), pickup(D), stack(D, E), pickup(B), stack(B, D)
%
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How to “write” STRIPS planning problems?
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PDDL: A Standard Syntax for Classical Planning Problems

e PDDL stands for Planning Domain Description Language
¢ Developed for International Planning Competetion (IPC); evolving since 1998.

* PDDL specifies syntax for problems P = (F, I, O, G) supporting STRIPS, variables,
types, and much more...

Problem in PDDL = — Plan

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 103/248


https://www.icaps-conference.org/competitions/

PDDL: A Standard Syntax for Classical Planning Problems

e PDDL stands for Planning Domain Description Language
* Developed for International Planning Competetion (IPC); evolving since 1998.

* PDDL specifies syntax for problems P = (F,I,O,G) supporting STRIPS, variables,
types, and much more...

Problem in PDDL = — Plan

® Problems in PDDL specified in two parts:
Domain: general info on the system (e.g., features, actions).

Instance: specifics of a problem (e.g., exact blocks).
® Many problem instances for the same domain.

¢ In IPC, planners are evaluated over unseen problems encoded in PDDL.
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PDDL Quick Facts

PDDL is not a propositional language:

iﬁ'}a‘: MORGAN ‘E;_(_'I AYPOOL PUBLISHERS

® Representation is lifted: using object
variables to be instantiated from a finite
set of objects. (Similar to predicate logic)

® Predicates to be instantiated with objects.
= at(?p, ?r): package ?p is at room ?r

e Action schemas parameterized by objects.
= pickup(?x): pickup block ?x
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PDDL Quick Facts

PDDL is not a propositional language:

iﬁ'}a‘: MORGAN ‘E;_(_'I AYPOOL PUBLISHERS

® Representation is lifted: using object
variables to be instantiated from a finite vk gl _
set of objects. (Similar to predicate logic) An I_ntrod_uc}_lm] o the,.

® Predicates to be instantiated with objects.
= at(?p, ?r): package ?p is at room ?r

e Action schemas parameterized by objects.
= pickup(?x): pickup block ?x

A PDDL planning task comes in two parts:
Domain: predicates, operators, types.

Problem: objects, initial state, goal
condition.
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Example: Blocks World Domain in STRIPS (PDDL Syntax)

(define (domain blocks)
(:requirements :strips)
(:action pick_up
:parameters (7x)
:precondition (and (clear 7x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear 7x)) (not (handempty)) (holding 7x)))
(:action put_down
:parameters (7x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))
(:action stack
:parameters (?7x 7y)
:precondition (and (holding 7x) (clear 7?y))
:effect (and (not (holding 7x)) (not (clear ?y)) (clear ?x) (handempty) (on ?x ?y)))
(:action unstack
:parameters (7x ?7y)
:precondition (and (on ?x ?7y) (clear 7x) (handempty))
:effect (and (clear ?y) (holding ?x) (not (on ?x ?y))
(not (clear ?7x)) (not (handempty))))
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An instance of blocks world in PDDL

&

Goal

Initial State

(define (problem blocks-example)
(:domain blocks)
(:objects A B C D E)
(:init (clear E) (clear A) (clear B) (clear D) (handempty)
(ontable E) (ontable A) (ontable B) (ontable C) (on D C))
(:goal (and (on C A) (on E C) (on B D))))
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An instance of blocks world in PDDL

&

Initial State
(define (problem blocks-example)
(:domain blocks)
(:objects A B C D E)

(:init (clear E) (clear A) (clear B) (clear D) (handempty)

(ontable E) (ontable A) (ontable B) (ontable C) (on D C))
(:goal (and (on C A) (on E C) (on B D))))

Goal

or better: &=

(define (problem blocks-example)
(:domain blocks)
(:objects A B C D E)
(:init (clear E) (clear A) (clear B) (clear D) (handempty)
(ontable E) (ontable A) (ontable B) (ontable C) (on D C))
(:goal (and (on C A) (on E C) (on B D) (ontable A) (ontable D))))
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Example: 8-Puzzle in PDDL

(define (domain tile)

(:requirements :strips :typing :equality)

(:types tile position) 5|92

(:constants blank - tile)

(:predicates (at ?t - tile ?x - position ?y - position) 84
(inc ?p - position ?pp - position) 113 E
(dec ?p - position ?pp - position))

(:action move-up
:parameters (7t - tile ?px - position ?py - position ?bx - position ?by - position)
:precondition (and (= ?px ?bx) (dec ?by ?py) (not (= ?t blank)) ...)

:effect (and (not (at blank ?bx ?by)) (not (at ?t ?px ?py))
(at blank ?px ?py) (at 7t ?bx ?by)))
(:action move-down

:parameters ... )
(:action move-left
:parameters ... )

(define (problem eight_tile)
(:domain tile)
(:objects tl1 t2 t3 t4 t5 t6 t7 t8 - tile pl p2 p3 - position)
(:init (inc pl p2) (inc p2 p3) (dec p3 p2) (dec p2 pil)
(at blank pl pl) (at t1 p2 p1) (at t2 p3 pl) (at t3 pl p2) ..)
(:goal (and (at t8 pl pl) (at t7 p2 pl) (at t6 p3 pl) ..)))
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Example: 2-Gripper Problem in PDDL

An autonomous robot moves picks/drops the balls in two rooms with its arms. Check post.

(define (domain gripper)
(:requirements :typing)
(:types room ball gripper)
(:constants left right - gripper)
(:predicates (at-robot ?r - room)(at ?b - ball ?r - room)(free 7g - gripper)
(carry %o - ball ?g - gripper))
(:action move
:parameters (7from ?to - room)
:precondition (at-robot ?from)
:effect (and (at-robot ?to) (not (at-robot ?from))))
(:action pick
:parameters (7obj - ball ?room - room ?gripper - gripper)
:precondition (and (at 7obj ?room) (at-robot ?room) (free 7gripper))
:effect (and (carry 7obj ?gripper) (not (at ?obj ?room)) (not (free ?gripper))))
(:action drop
:parameters (?obj - ball 7room - room ?gripper - gripper)
:precondition (and (carry ?obj ?gripper) (at-robot ?room))
:effect (and (at 7obj ?room) (free 7gripper) (not (carry 7obj ?gripper)))))

(define (problem gripper2)
(:domain gripper)
(:objects roomA roomB - room Balll Ball2 - ball)
(:init (at-robot roomA) (free left) (free right) (at Balll roomA)(at Ball2 roomh))
(:goal (and (at Balll roomB) (at Ball2 roomB))))
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Example: Visitall Domain in PDDL

(define (domain grid-visit-all) ;;; Visit all cells in a grid
(:requirements :strips)
(:predicates (connected ?x ?7y) (at-robot ?x) (visited ?x))

(:action move
:parameters (7curpos ?7nextpos)
:precondition (and (at-robot 7curpos) (connected ?curpos ?nextpos))
teffect (and (at-robot 7nextpos) (not (at-robot ?curpos)) (visited 7nextpos))))

(define (problem grid-2)

(:domain grid-visit-all)

(:objects loc-x0-y0 loc-x0-y1 loc-x1-yO loc-xl-y1)

(:init (at-robot loc-x0-y0) (visited loc-x0-y0) (connected loc-x0-y0 loc-x1-yO0)
(connected loc-x0-y0 loc-x0-y1) (connected loc-x0-yl1 loc-x0-y0)
(connected loc-x0-yl1 loc-x1-y1) (connected loc-x1-y0O loc-x1-y1)
(connected loc-x1-yO loc-x0-y0) (connected loc-xl-yl loc-x1-y0)
(connected loc-x1-yl loc-x0-y1))

(:goal (and (visited loc-x0-y0) (visited loc-x0-y1)

(visited loc-x0-y2) (visited loc-x0-y3))))

A\ The grid needs to be represented in PDDL:

* one object per cell (e.g., loc-x0-y0, loc-x0-y1, etc.)
* adjacency relations between cells (e.g., (connected loc-x0-y0 loc-x1-y0))
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Example: Logistics in STRIPS PDDL

© 7= There are trucks and airplanes that can move
ol
- (1 g packages between different citites and airports.
ol - = The goal is to deliver packages to their
iy destinations.
=l More info here; planning domain here
. |

(define (domain logistics)

(

(
(
(
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:requirements :strips :typing :equality)
:types airport - location truck airplane - vehicle vehicle packet - thing ..)
predicates (loc-at ?x - location ?y - city) (at ?x - thing ?y - location) ...)
raction load

:parameters (?x - packet ?y - vehicle ?z - location)

:precondition (and (at ?x 7z) (at ?y ?7z))
:effect (and (not (at ?x ?z)) (in ?x ?y)))
taction unload ..)
raction drive
:parameters (?x - truck ?y - location 7z - location ?c - city)
:precondition (and (loc-at 7z ?c) (loc-at ?y ?c) (not (= 7z ?y)) (at ?x 7z))
:effect (and (not (at ?x ?z)) (at ?x ?y)))
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Example: Logistics in STRIPS PDDL

@ & s There are trucks and airplanes that can move
= m packages between different citites and airports.
B ——jma i s The goal is to deliver packages to their
iy — B destinations.
iy, - More info here; planning domain here
=

(define (problem log3_2)
(:domain logistics)
(:objects packetl packet2 ... - packet
truckl truck2 truck3 ... - truck e it e dr T doe d dos bt
cityl city2 ... - city ...) ; (o] gty D
(:init (at packetl officel)
(at packet2 office3)
(at truck9 city7-1) ...)
(:goal (and (at packetl office2)
(at packet2 office2)
o))

problen strips-10g-x-5)
atn logistics-strips)
t 3 package2 packagel cltyd citys city?

domain.pdd!

probos.pddl

(location citys-1)

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 110/248


https://pantelis.github.io/aiml-common/lectures/planning/task-planning/pddl/manufacturing/
https://editor.planning.domains/#read_session=CYXciTR40G
https://editor.planning.domains/#read_session=CYXciTR40G

Manufactoring Robot Planning in PDDL

On this page
Planning »

Manufacrturing Robot Planning in PDDL

s a real case that we tackled for a manufacturing company. This company devises supply chairs to make
fical equipments. A supply chain consists of independent rabotized fcelts, which re

operations on the pieces: cleaning. checking, marking. assembling etc. jeces are put on trays, and mobile

robots are programmex to take and to transport the trays betwe d rent units. The image below illustrates

this process:

ing of the supply chain. A tray contains only ane symbolType

sequence of operations from the i g to the end of the supply chain At
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PDDL @ ROS Robotics

P ROSPlan

PlanSys ROS2 Planning System

i#2 Planning . v Y ROSPlan Overview

= Ltem i : he osttan famevor

https:

https://plansys2.github.io/ //kcl-planning.github.io/R0OSPlan/
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Grounding

PDDL encoding uses variables on predicates and action schemas.

® variables replaced by constants of given types — avoids repetition
® name start with ?, e.g., 7p for package, ?r for room, etc.

Process of replacing variables by constants, called “instantiation” or “grounding”.
* Grounded on(?z,?y): on(A, A), on(A, B), on(B, A), on(A,C), ..

¢ Grounding actions obtained by replacing variables by constants of corresponding type
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Grounding

PDDL encoding uses variables on predicates and action schemas.

® variables replaced by constants of given types — avoids repetition
® name start with ?, e.g., 7p for package, ?r for room, etc.

Process of replacing variables by constants, called “instantiation” or “grounding”.
* Grounded on(?z,?y): on(A, A), on(A, B), on(B, A), on(A,C), ..
¢ Grounding actions obtained by replacing variables by constants of corresponding type

* Note that instantiation above yields actions like stack(A, A) and unstack(C,C')

» To avoid such instances, one can add equality or inequality preconditions such as 7r1 #7r2
that would avoid instantiations where variables 7r1 and ?r2 replaced by same constant.
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Grounding

PDDL encoding uses variables on predicates and action schemas.

® variables replaced by constants of given types — avoids repetition
® name start with ?, e.g., 7p for package, ?r for room, etc.

Process of replacing variables by constants, called “instantiation” or “grounding”.
* Grounded on(?z,?y): on(A, A), on(A, B), on(B, A), on(A,C), ..

¢ Grounding actions obtained by replacing variables by constants of corresponding type

* Note that instantiation above yields actions like stack(A, A) and unstack(C,C')

» To avoid such instances, one can add equality or inequality preconditions such as 7r1 #7r2
that would avoid instantiations where variables 7r1 and ?r2 replaced by same constant.

Specialized “grounding systems” are used.

Grounded instance is (much) larger than original one (but easier to solve!).
© How large? What does it depends on?

wn
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PDDL in VSCode!
Install PDDL Extension by Jan Dolejsi (Extension Id: jan-dolejsi.pddl)

p1.pddl - earth-observation - Visual Studio Code

File Edit Selection View Go Run Terminal Help

~ oPENEDITORS
D o
domain pddl

Group2 fonain earth_observation)

X pipddl
 EARTH-OBSERVATION
patch - object
direction - object
cost-direction - direction

east - direction
north-east south-east - cost-direction

CONNECTED ?p ?n - patch ?d - direction
is-focal-point ?p - patch

is-target ?p - patch

scanned ?p - patch

slew
> ters (?p ?n - patch ?d - cost-direction
recondition (and

(CONNECTED ?p ?n 2d)

(is-focal-point 7p)

effect (and
(not (is-focal-point 7p))
(is-focal-point ?n)

slew
eters (?p ?n - patch
EXPLORER BOOKMARK precondition (and
> TmeLe (CONNECTED ?p ?n east)
PLANNING DOMAINS (is-focal-point ?p)
Shen Soh z

roblem pol
| earth_observation
object
p1l pl2 p13 p21 p22 p23 p3l p32 p33 - patch
CONNECTED p11 p22 north-east
p21 east
p23 north-east
p22 east
CONNECTED p12 p21 south-east
CONNECTED p13 p23 east
CONNECTED p13 p22 south-east
CONNECTED p21 p32 north-east
CONNECTED p21 p31 east
CONNECTED p22 p33 north-east
p32 east
p31 south-east
p33 east
CONNECTED p23 p32 south-east
CONNECTED p31 p12 north-east
CONNECTED p31 pl1 east
P13 north-east
p12 east
CONNECTED p32 pll south-east
CONNECTED p33 p13 east
CONNECTED p33 p12 south-east
is-focal-point pl2
is-target pll
is-target p13
is-target p21
is-target p23
is-target p3l
is-target p33

joal (and
(not (is-target pl1))
(not (is-target pl3))
(not (is-target p21))
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https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl
https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl

Main Selling Points...

Generality.
Accessibility.
Explainable.
Elaboration tolerant.
Flexibility.

@ Autonomy.

Rapid prototyping.

B Declarative.
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Blocks World tutorial in VSCODE

problempdc Planner output X
TEST EXPLORER.
PoDLTESTS

' 003
dciviungs

9:51 - Introduction >

DN oy mm i | ©@ kel
Modeling in PDDL - Episode1 - Blocksworld

. '
S Jff‘ P‘?'EJS_' s /> shae 4 Download cip  [] Save
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https://youtu.be/_NOVa4i7Us8?si=--6rp89bLYCw8gb3

SMART HOME

2 @]

Challenge: Smart Home Planning
An intelligent robot can perform basic actions in a smart house such as
turning on lights, setting room thermostats, and opening/locking doors.
Each device (e.g., lights, thermostats, doors) is associated with a specific
room, and actions are conditioned on the type and locations of the
device and robot. The domain includes predicates to represent the state of
the environment (e.g., whether a light is on or a door is open or locked) and
enables planning agents to achieve goals like preparing a room for occupancy
or securing the house before bedtime.

(define (domain smart-home)
(:requirements :strips :typing)

(:types room device)

(:predicates
(robotAt 7?x)

(light-on ?r - room)

Complete this action: £

(:action open-door

(thermostat-set ?r - room) fparame;?§§ (7g = devdez)
(door-locked 7d - device) ‘precondition
effect

(door-open 7d - device)
(in-room ?d - device ?r - room)

(is-1light 7d - device)
(is-thermostat ?d - device)
(is-door 7d - device))
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Challenge: Smart Home Planning

An intelligent robot can perform basic actions in a smart house such as

SMART HOME turning on lights, setting room thermostats, and opening/locking doors.
Each device (e.g., lights, thermostats, doors) is associated with a specific
p.~3 room, and actions are conditioned on the type and locations of the

device and robot. The domain includes predicates to represent the state of

the environment (e.g., whether a light is on or a door is open or locked) and

a enables planning agents to achieve goals like preparing a room for occupancy
or securing the house before bedtime.

(define (domain smart-home)
(:requirements :strips :typing)

(:types room device) Complete this action: ;’é
(:predicates
(robotAt ?x) (:action open-door
(light-on ?r - room) :parameters (?d - device)
(hermesiai—sel e - ceom) :precondition (and (is-door 7d) (at 7d)
(door-locked ?d - device) (not (door-locked 7d)))
(door-open ?d - device) :effect (and (door-open ?7d)))
(in-room ?d - device ?r - room)
(is-1light 7d - device)
(is-thermostat ?d - device) ~/f
(is-door 7d - device))
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Challenge: Smart Home Planning

An intelligent robot can perform basic actions in a smart house such as

SMART HOME turning on lights, setting room thermostats, and opening/locking doors.
Each device (e.g., lights, thermostats, doors) is associated with a specific
p.~3 room, and actions are conditioned on the type and locations of the

device and robot. The domain includes predicates to represent the state of

the environment (e.g., whether a light is on or a door is open or locked) and

a enables planning agents to achieve goals like preparing a room for occupancy
or securing the house before bedtime.

(define (domain smart-home)
(:requirements :strips :typing)
(:types room device)

(:predicates Complete this action: £
(robotAt 7x) . ;
(igi=om 57 = cecm) (:action toggle-light
(thermostat-set ?r - room) fparame;?§§
(door-locked ?d - device) :p;:CO: thion
(door-open ?d - device) ) rertec
(in-room ?d - device ?r - room)
(is-1light 7d - device)
(is-thermostat ?d - device)

(is-door 7d - device))
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Challenge: Smart Home Planning

An intelligent robot can perform basic actions in a smart house such as

SMART HOME turning on lights, setting room thermostats, and opening/locking doors.
Each device (e.g., lights, thermostats, doors) is associated with a specific
é room, and actions are conditioned on the type and locations of the
device and robot. The domain includes predicates to represent the state of
the environment (e.g., whether a light is on or a door is open or locked) and

a enables planning agents to achieve goals like preparing a room for occupancy

or securing the house before bedtime.

(define (domain smart-home)
(:requirements :strips :typing)
(:types room device)
(:predicates

(robotAt 7?x)

(light-on ?r - room)
(thermostat-set ?r - room)
(door-locked ?d - device)
(door-open 7d - device)

Complete this action: £

(:action toggle-light
:parameters (?d - device)
:precondition (and (is-light 7d) (in-room ?d 7?r))
:effect (and (when (light-on ?r)
(not (light-on ?r)))
(when (not (light-on ?r))

(in-room ?d - device ?r - room) (light-on 7r))))

(is-1light 7d - device)

(is-thermostat ?d - device) .

(is-door ?7d - device)) R Conditional effects not part of STRIPS!
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Smart-house by ChatGPT!

Here's a PDDL domain and problem for a smart house. This example models simple actions such as
turning lights on/off, adjusting the thermostat, and locking doors.

B PDDL Problem: Secure and Prepare Living Room
=

# PDDL Domain: Smart House (define (problem smart-home-problem)
(:domain smart-home)
6 Copy Edit
objects
(define (domain smart-home) L F=iE - G
Light1 thermol - device

(:requirements :strips :typing)
door1 - door

(:types

room device door init

in-room light1 living-room)
in-room thermol living-room)

is-thermostat thermo1)

:predicates

(light-on ?r - rooem)
(thermostat-set ?r - room)
(door-locked ?d - door) _—
(in-room 2d - device ?r - room) (and

(is-light »d - device) (light-on living-room)
(is-thermostat 7d - device) (thermostat-set living-room)
(is-door 2d - door) (door-Tocked door1)

§
(
(is-light light1)
(
(

is-door door1)

;5 Action: turn on a light
(:action turn-on-light
parameters (?1 - device ?r - room)
precondition (and (in-room ?1 2r) (is-light ?1))

effect (light-on 7r)

;7 Action; set thermostat havior, , July 28 -August 1, ECI25 118/248

(:action set-thermostat




The International Planning Competition (IPC)

Competition?

“Run competing planners on a set of benchmarks devised by the IPC organizers. Give awards
to the most effective planners.”

® 1998, 2000, 2002, 2004, 2006, 2008, 2011, 2014, 2018, 2019, 2020, 2023, ...

® PDDL [McDermott and others (1998); Fox and Long (2003); Hoffmann and Edelkamp (2005)]
® ~ 40 domains, > 1000 instances, 74 (!!) planners in 2011

® Optimal track vs. satisficing track

® Various others: uncertainty, learning, . . .

http://ipc.icaps-conference.org/
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PDDL beyond STRIPS /&

PDDL can express significantly more than what STRIPS
can model, including:

Conditional effects (ADL)

Universal quantification

&}é‘: MORGAN S&CLAYPOOL PUBLISHERS

BN

Typed variables

Functions

[~

Durative actions

&

Numeric fluents

o

Temporal planning

Planning with preferences

Axioms (derived predicates)

5]

Continous processes PDDL+

Non-deterministic actions! < later...
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S. Sardifia, Al Classical and Non-de

First PDDL @ IPC 1998

PDDL  The Planning Domain Definition Language

Version 1.2

This manual was produced by the AIPS-98 Planning Competition Committee:

Malik Ghallab, Ecole Nationale Superieure D'ingenieur des
Constructions Aeronantiques

Adele Howe (Colorado State University)

Craig Knoblock, 181

Drew McDermott (chair) (Yale University)

Ashwin Ram (Georgia Tech University)

Manuela Veloso (Crrnegie Mellon University)

Daniel Weld (University of Washington)

David Wilkins (SRI)

It was based on the UCPOP language manual, written by the following
researchers from the University of Washington:

Anthony Barrett, Dave Christianson, Marc Friedman, Ching Kwok,
Keith Golden, Scott Penberthy. David E Smith, Ying Sun,
& Daniel Weld

Contact Drew MeDermott (drew.medermott@yale.edu) with comments.

Yale Center for Computational Vision and Control
Tech Report CVC TR-98 003/DCS TR-1165
October.

terministic Planning: Model-based Autonomous B]e(waavior, , July 28 -August 1, ECI25
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PDDL 2

In the 2002 Competition, planners were
set the challenge of considering more
complicated domains and problems which
feature both temporal and numeric
considerations (scheduling and resources).
As a result, additions the language were
necessary to facilitate modelling time and
numbers:

e Level 1: STRIPS fragment.

® |evel 2: numeric fluents, functions.
® Level 3: durative actions.

® Level 4: continuous effects/changes.

S. Sardifa, Al Classical and Non-deterministic Planning: Model-based Au

.1 @ IPC 2002

Journal of Artificial Intelligence Research 20 (2003) 61-124

PDDL2.1 : An Extension to PDDL for Expressing Temporal
Planning Domains

Maria Fox

Derek Long

Department of Computer and Information Sciences
University of Strathclyde, Glasgow, UK

1S.STRATH.AC

LCIS.STRATH.AC

Abstract

In recent years research in the planning community has moved increasingly towards
application of planners to realistic problems involving both time and many types of re-
sources. For example, interest in planning demonstrated by the space research community
has inspired work in observation scheduling, planetary rover exploration and spacecraft
control domains. Other temporal and resource-intensive doma ncluding logistics plan-
ning, plant control and manufacturing have also helped to focus the community on the
maodelling and reasoning issues that must be confronted to make planning technology meet
the challenges of application.

The International Planning Competitions have acted as an important motivating force
behind the progress that has been made in planning since 1998. The third competition
(held in 2002) set the planning community the challenge of handling time and numeric
resources. This necessitated the development of a modelling language capable of expressing
temporal and numeric properties of planning domains. In this paper we describe the
language, PDDL2.1, that was used in the competition. We describe the syntax of the
language, its formal semantics and the validation of concurrent plans. We observe that
PDDL2.1 has considerable modelling power — exceeding the capabilities of current planning
technology — and presents a number of important challenges to the research community.

onomous Behavior, , July 28 -August 1, ECI25 122/

Submitted 09/02; published 12/03

UK
UK



https://jair.org/index.php/jair/article/view/10352/24759
https://jair.org/index.php/jair/article/view/10352/24759

PDDL+ for Continous Processes and Events

Related to Hybrid Automata!

S. Sardifia, Al Classical and No

Journal of Artificial Intelligence Research 27 (2006) 2353297 Submitted 03/06: published 10/06

Modelling Mixed Discrete-Continuous Domains for Planning

Maria Fox MARIA.FOX@CIS.STRATH.AC.UK
Derek Long DEREK.LONC@CIS. STRATH.AC.UK
Department of Computer and Information Sciences

University of Strathclyde,

26 Richmond Street, Glasgow, G1 IXH, UK

Abstract

In this paper we present PDDL+-, a planning domain description language for modelling
mixed discrete-continuous planning domains. We describe the syntax and modelling style
of PDDL+. showing that the language makes convenient the modelling of complex time-
dependent effects. We provide a formal semantics for PDDL+ by mapping planning instances
into constructs of hybrid automata. Using the syntax of HAs as our semantic model
we construct a semantic mapping to labelled transition systems to complete the formal
interpretation of PDDL+ planning instances.

An advantage of building a mapping from PDDL+ to HA theory is that it forms a bridge
between the Planning and Real Time Systems research communities. One consequence
is that we can expect to make use of some of the theoretical properties of HAs. For
example, for a restricted class of HAs the Reachability problem (which is equivalent to
Plan Existence) is decidable.

PDDL+ provides an alternative to the continuous durative action model of PDDL2.1,
adding a more flexible and robust model of time-dependent behaviour.

1. Introduction

n-deterministic Planning: Model-based Autonomous Behawor July 28 Auﬁus t 1, ECI25
This paper describes PDDL-+. an extension of the L (McDeimott & AIPS 98 Plan-
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Planning Wiki

FLaiinnirg.vwing =
The Al Planning &
PDDL Wiki

Plannmg Wlkl - The Al Plannmg & PDDL W||<|

gnaguagno, athan Mount,\.

The International
Al Planning re

This competi dating ) as defined a a bose definition language, Planning
be capable of

https://planning.wiki/
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PDDL beyond STRIPS 4

PDDL Version | Year | Features

PDDL 1.0 1998 | STRIPS, typing

PDDL 2.1 2003 | Numeric fluents, durative actions, functions
PDDL 2.2 2004 | Derived predicates, timed initial literals

PDDL 3.0 2005 | Trajectory constraints, preferences

PDDL 3.1 2008 | Functional fluents

PDDL+ 2006 | Continuous processes/events (HAs)

PPDDL 2004 | Probabilistic effects

FOND-PDDL 2006 | Like PPDDL but also non-deterministic effects

Table: PDDL versions and their main features.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25
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Part Il

Classical Planning: Methods
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Part 3: Classical Planning: Methods

B Complexity of Planning

Bl Planning as heuristic search
m Relaxations
m Delete-relaxation h™
m From AT to Amax, Paaqa and Ape
m State of the art classical planners

Planning as SAT
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Part 3: Classical Planning: Methods

B Complexity of Planning
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Algorithmic Problems in Planning

Satisficing Planning V/

Input: A planning task P = (F,0,1,G).
Output: A plan for P, or ‘unsolvable’ if no plan for P exists.

Optimal Planning 7%
Input: A planning task P = (F,0,1,G).

Output: An optimal plan for P, or ‘unsolvable’ if no plan for P exists.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25
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Algorithmic Problems in Planning

Satisficing Planning V/

Input: A planning task P = (F,0,1,G).
Output: A plan for P, or ‘unsolvable’ if no plan for P exists.

Optimal Planning 7%

Input: A planning task P = (F,0,1,G).
Output: An optimal plan for P, or ‘unsolvable’ if no plan for P exists.

Observations:

® The successful techniques for either one of these are almost disjoint!

e Satisficing planning is much more effective in practice.

* Programs solving these problems are called (optimal) planners, planning systems, or
planning tools.
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Decision Problems in Planning

PlanEx: Satisficing Planning /

The problem of deciding, given a planning task P, whether or not there exists a plan for P.

PlanLen: Optimal Planning 7%

The problem of deciding, given a planning task P and an integer B (bound), whether or not
there exists a plan for P of length at most B.
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Review of Complexity: P, NP and PSPACE

Turing Machine (TM)

Works on a tape consisting of tape cells, across which its R/W head moves. The machine has
internal states. There are transition rules specifying, given the current cell content and
internal state, what the subsequent internal state will be, and whether the R/W head moves
left or right or remains where it is. Some internal states are accepting (‘yes’; else ‘no’).

Thre Complexity Classes for Decision Problems

P: Decision problems for which there exists a deterministic TM that runs in time
polynomial (in the size of its input).

NP: Decision problems for which there exists a non-deterministic TM that runs in time
polynomial. Accepts if at least one of the possible runs accepts.

PSPACE: Decision problems for which there exists a deterministic TM that runs in
space polynomial in the size of its input.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 130/248



Planning is hard!
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Domain-Specific: PlanEx vs. PlanLen

In general, both have the same complexity
(PSPACE-complete).

Within particular applications, bounded length plan
existence (i.e., optimal planning) is often harder than
plan existence.

Initial State

Al Automated Planning

This happens in many IPC benchmark domains.

PlanLen is NP-complete while PlanEx is in P.
» For example: Blocksworld and Logistics.

A In practice, optimal planning is (almost) never “easy”.
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The Blocksworld is Hard?

Initial State Goal

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 133/248



The Blocksworld is Hard!

Initial State Goal State
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So, why all the fuss?

| ® n blocks, 1 hand.
® A single action either takes a block with the hand or puts a block
we're holding onto some other block/the table.
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So, why all the fuss?

| ® n blocks, 1 hand.
® A single action either takes a block with the hand or puts a block
we're holding onto some other block/the table.

blocks states blocks states
1 1 9 4596553
2 3 10 58941091
3 13 11 824073141
4 73 12 12470162233
5 501 13 202976401213
6 4051 14 3535017524403
7 37633 15 65573803186921
8 394353 16 1290434218669921
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So, why all the fuss?

| ® n blocks, 1 hand.
® A single action either takes a block with the hand or puts a block
we're holding onto some other block/the table.

blocks states blocks states
1 1 9 4596553
2 3 10 58941091
3 13 11 824073141
4 73 12 12470162233
5 501 13 202976401213
6 4051 14 3535017524403
7 37633 15 65573803186921
8 394353 16 1290434218669921

State spaces may be huge. In particular, the state space is typically exponentially large in the
size of the factored (compact) specification of the problem.
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So, why all the fuss?

| ® n blocks, 1 hand.
® A single action either takes a block with the hand or puts a block
we're holding onto some other block/the table.

blocks states blocks states
1 1 9 4596553
2 3 10 58941091
3 13 11 824073141
4 73 12 12470162233
5 501 13 202976401213
6 4051 14 3535017524403
7 37633 15 65573803186921
8 394353 16 1290434218669921

State spaces may be huge. In particular, the state space is typically exponentially large in the
size of the factored (compact) specification of the problem.

In other words: Search problems typically are computationally hard (e.g., optimal
Blocksworld solving is NP-complete).
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Computation: how to solve STRIPS planning problems?

P Key idea
Exploit two roles of language:

specification: concise and accessible model description.

computation: reveal useful heuristic information (structure).

Two traditional approaches: search vs. decomposition
explicit search of the state model S(P) direct but not effective until “recently”.

near decomposition of the planning problem thought a better idea.
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Computational Approaches to Classical Planning
* General Problem Solver (GPS) and Strips (50's-70's): mean-ends analysis,
decomposition, regression, ..

* Partial Order (POCL) Planning (80's): work on any open subgoal, resolve threats;
UCPOP 1992.

® Graphplan (1995 — 2000): build graph containing all possible parallel plans up to
certain length; then extract plan by searching the graph backward from Goal.

e SATPIlan (1996 — ..): map planning problem given horizon into SAT problem; use
state-of-the-art SAT solver.

* Heuristic Search Planning (1996 — ..): search state space S(P) with heuristic function
h extracted from problem P.

* Model Checking Planning (1998 — ..): search state space S(P) with ‘symbolic’
Breadth first search where sets of states represented by formulas implemented by BDDs ...
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State of the Art in Classical Planning

e Significant progress since Graphplan.

Empirical methodology:

standard PDDL language
planners and benchmarks available; competitions
focus on performance and scalability

Large problems solved (non-optimally).

Different formulations and ideas

Planning as Heuristic Search. -
Planning as SAT. -
Other: Local Search (LPG), Monte-Carlo Search (Arvand), ..

We'll focus on 1 mainly, and partially on 2.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25
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Part 3: Classical Planning: Methods

B Complexity of Planning

Bl Planning as heuristic search
m Relaxations
m Delete-relaxation h™
m From AT to Amax, Paaqa and Ape
m State of the art classical planners

Planning as SAT
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Bl Planning as heuristic search
m Relaxations
m Delete-relaxation h™
m From AT to Amax, Paaqa and Ape
m State of the art classical planners
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Computation: How to Solve Classical Planning Problems?

® Planning is one of the oldest areas in Al; many ideas have been tried
» A bit of history: first Al planners from late 50s: GPS (Simon and Newell)

Problem — = Plan

e We focus on two of the ideas that scale up best computationally:

Planning as Heuristic Search.
Planning as SAT.

® These methods are able to solve problems over huge state spaces.

© But some domains are inherently hard, and for them, general, domain-independent
planners unlikely to approach specialized methods.
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Planning as Heuristic Search

e STRIPS P = (F,0,1,G) encodes model S(P) = (S, s9, Sg, Act, A, f,c)

® Finding a plan in S(P) reduces to finding a path/reachability in a graph where:
» Nodes represent the states s in the model

> Edges (s,s’) capture corresponding transitions s’ = f(a,s), a € A(s)

® State models and graphs given implicitly by P.
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Planning as Heuristic Search

e STRIPS P = (F,0,I,G) encodes model S(P) = (S, so, Sq, Act, A, f,¢c)

* Finding a plan in S(P) reduces to finding a path/reachability in a graph where:
» Nodes represent the states s in the model

> Edges (s,s’) capture corresponding transitions s’ = f(a,s), a € A(s)
e State models and graphs given implicitly by P.
® Their sizes are exponential in number of atoms in F.
Il 1t's critical to use heuristic functions to guide the search.

I\ If the user had to supply the heuristic function by hand, then we would lose some of the
selling points: generality + autonomy + flexibility + rapid prototyping.
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Planning as Heuristic Search

e STRIPS P = (F,0,1,G) encodes model S(P) = (S, sg, Sg, Act, A, f,c)

¢ Finding a plan in S(P) reduces to finding a path/reachability in a graph where:
P> Nodes represent the states s in the model

> Edges (s,s’) capture corresponding transitions s’ = f(a, s), a € A(s)
® State models and graphs given implicitly by P.
® Their sizes are exponential in number of atoms in F.
Il It's critical to use heuristic functions to guide the search.

I\ If the user had to supply the heuristic function by hand, then we would lose some of the
selling points: generality + autonomy + flexibility + rapid prototyping.

How to get heuristic functions automatically from P itself?
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Heuristics: where they come from? (£

General idea for obtaining heuristics

Heuristic functions obtained as optimal cost functions of relaxed problems.

® Routing Finding: Manhattan distance or straight line.
® N-puzzle: # misplaced tiles or sum of Manhattan distances.
® Travelling Salesman Problem: Spanning Tree.

Why is navigation hard?
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Heuristics: where they come from? (£

General idea for obtaining heuristics

Heuristic functions obtained as optimal cost functions of relaxed problems.

® Routing Finding: Manhattan distance or straight line.
® N-puzzle: # misplaced tiles or sum of Manhattan distances.
® Travelling Salesman Problem: Spanning Tree.

=
o
=" & Why is navigation hard?
.; :.' Because of obstacles!

i
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Heuristics: where they come from? (£

General idea for obtaining heuristics

Heuristic functions obtained as optimal cost functions of relaxed problems.

® Routing Finding: Manhattan distance or straight line.
® N-puzzle: # misplaced tiles or sum of Manhattan distances.
® Travelling Salesman Problem: Spanning Tree.
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e Why is navigation hard? =
g Because of obstacles! 1
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== So, suppose you can flight or L T
- _! walk through walls! =
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How to Relax Informally

|
Relaxation means to simplify the problem, and take the solution to the simpler
problem as the heuristic estimate for the solution to the actual problem.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 143/248



How to Relax Informally

|
Relaxation means to simplify the problem, and take the solution to the simpler
problem as the heuristic estimate for the solution to the actual problem.

® You have a problem, P € P, whose perfect heuristic h* you wish to estimate.

® You define a simpler problem, P’ € P/, whose perfect heuristic h'* can be used to
estimate h*.

® You define a transformation, r, that simplifies instances from P into instances P’.

* Given problem instance P € P, you estimate h*(P) by h'*(r(P)).

P 1 R U {oc}

h*
| |
r P 1

|
C I J C )
S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 143/248
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How to Relax During Search: Diagram

Using a relaxation R = (P’,r, /") during search:

e N

Problem P—>[ Heuristic Search }‘QSolution to P

state s h(5> = h/*(T(Ps»

r W
r(P)

e II: IT with initial state replaced by s, i.e., Il = (F, A, ¢, I,G) changed to (F, A,c,s,G).
» That is, the task of finding a plan for state s.

So, during search, the relaxation is used only inside the computation of the heuristic
function on each state; the relaxation does not affect anything else. /&
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Relaxations: Navigation

(:action move
:parameters (7curpos 7nextpos)
Navigation in 4-connected grid with SEECReEiEen (e (058 (oo
(connected ?curpos ?nextpos)
obstacles: (not (obstacle ?nextpos)))
:effect (and (at ?nextpos)
(not (at ?curpos))))

P’: can go through walls, drop obstacle preconditions:
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Relaxations: Navigation

(:action move
:parameters (7curpos 7nextpos)
Navigation in 4-connected grid with rprecondition (an% (55 o)
connected ?7curpos ?nextpos)
obstacles: (not (obstacle ?nextpos)))
:effect (and (at ?nextpos)
(not (at ?curpos))))

P’: can go through walls, drop obstacle preconditions:

(:action move
:parameters (7curpos 7nextpos)
:precondition (and (at ?curpos)
(connected ?curpos ?nextpos)
;; drop obstacle precondition

:effect (and (at ?nextpos)
(not (at-robot 7curpos))))

What is h'* for the relaxed problem?
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Relaxations: Navigation

(:action move
:parameters (7curpos 7nextpos)
Navigation in 4-connected grid with rprecondition (an% (55 o)
connected ?7curpos ?nextpos)
obstacles: (not (obstacle ?nextpos)))
:effect (and (at ?nextpos)
(not (at ?curpos))))

P’: can go through walls, drop obstacle preconditions:

(:action move
:parameters (7curpos 7nextpos)
:precondition (and (at ?curpos)
(connected ?curpos ?nextpos)
;; drop obstacle precondition

:effect (and (at ?nextpos)
(not (at-robot 7curpos))))

What is h'* for the relaxed problem?
Manhattan Distance! (|x — goal.z| + |y — goal.y|)
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Relaxations: Navigation

(:action move
:parameters (7curpos 7nextpos)
Navigation in 4-connected grid with rprecondition (an% (55 o)
connected ?7curpos ?nextpos)
obstacles: (not (obstacle ?nextpos)))
:effect (and (at ?nextpos)
(not (at ?curpos))))

P’: can go through walls, drop obstacle preconditions:

(:action move
:parameters (7curpos 7nextpos)
:precondition (and (at ?curpos)
(connected ?curpos ?nextpos)
;; drop obstacle precondition

:effect (and (at ?nextpos)
(not (at-robot 7curpos))))

What is h'* for the relaxed problem?
Manhattan Distance! (|x — goal.z| + |y — goal.y|)

I\ But, how do we know which predicate to drop?
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Relaxations: N-Puzzle

(:action slide
:parameters (7t ?sl 7s2)
:precondition (and (at ?t ?s1) (blank ?7s2)
(connected ?s1 7s2))
‘ teffect (and (at ?t ?s2) (blank ?sl)

15| 2 112 (not (at 7t ?s1)) (not (blank ?s2))))

/

516 (11 Proposal 1: P’: ignore blanks; can overlap tiles
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Relaxations: N-Puzzle

(:action slide
:parameters (7t 7sl 7s2)
:precondition (and (at ?t ?s1) (blank ?7s2)
(connected ?s1 7s2))

12

11

‘ :effect (and (at 7t ?s2) (blank 7s1)
(not (at ?t ?s1)) (not (blank ?s2))))

Proposal 1: P’: ignore blanks; can overlap tiles

(:action slide
:parameters (7t ?sl 7s2)
:precondition (and (at ?t ?sl1) ;; drop blank
(connected 7sl 7s2))
:effect (and (at 7t ?7s2)
(not (at 7t ?s1))))

h'*: Manhattan Distance!

In the example: " =2 +0+5+---+2+0+5
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Relaxations: N-Puzzle

(:action slide
:parameters (7t 7sl 7s2)
:precondition (and (at ?t ?sl) (blank ?7s2)
(connected 7sl 7s2))

12

11

‘ :effect (and (at ?t ?s2) (blank 7s1)
(not (at 7t ?7s1)) (not (blank ?7s2))))

/

Proposal 2: P’: can lift and move tiles together
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Relaxations: N-Puzzle

(:action slide
:parameters (7t 7sl 7s2)
:precondition (and (at ?t ?sl) (blank ?7s2)
(connected 7sl 7s2))
‘ :effect (and (at ?t ?s2) (blank 7s1)
(not (at 7t ?7s1)) (not (blank ?7s2))))

5 6 |11 Proposal 2: P’: can lift and move tiles together

(:action slide
:parameters (7t ?sl 7s2)
4 9 10 7 :precondition (and (at ?t ?s1)) ;; drop blank
reffect (and (at 7t 7s2) ;; and connected
(not (at 7t 7s1))))

| S h'*: Misplaced tiles
In the example: /" =15
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Relaxations: N-Puzzle

(:action slide
:parameters (7t 7sl 7s2)
:precondition (and (at ?t ?sl) (blank ?7s2)
(connected 7sl 7s2))
‘ :effect (and (at ?t ?s2) (blank 7s1)
(not (at 7t ?7s1)) (not (blank ?7s2))))

5 6 |11 Proposal 2: P’: can lift and move tiles together

(:action slide
:parameters (7t ?sl 7s2)
4 9 10 7 :precondition (and (at ?t ?s1)) ;; drop blank
reffect (and (at 7t 7s2) ;; and connected
(not (at 7t 7s1))))

| S h'*: Misplaced tiles
In the example: /" =15
I\ Again, how do we know which predicate to drop?
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Goal Counting Relaxation

Let's act as if every action is possible and no 'undos':

Drop all preconditions — all is executable.

Drop all negative effects — no undos.
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Goal Counting Relaxation

Let's act as if every action is possible and no 'undos':

Drop all preconditions — all is executable.

Drop all negative effects — no undos.

Problem P: All STRIPS planning tasks.

Simpler problem P’: All STRIPS planning tasks with empty preconditions and deletes.
Perfect heuristic »'* for P": Optimal plan cost wrt P’.

Transformation r: Drop the preconditions and deletes.
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Goal Counting Relaxation

Let's act as if every action is possible and no 'undos':

Drop all preconditions — all is executable.

Drop all negative effects — no undos.

Problem P: All STRIPS planning tasks.

Simpler problem P’: All STRIPS planning tasks with empty preconditions and deletes.
Perfect heuristic »'* for P": Optimal plan cost wrt P’.

Transformation r: Drop the preconditions and deletes.

(:action move

:parameters (7curpos ?nextpos) Relaxation P’:
:precondition (and (at ?curpos)
(connected 7curpos ?nextpos) (:action move
(not (obstacle 7nextpos))) :parameters (7curpos ?7nextpos)
:effect (and (at 7nextpos) (not (at ?curpos)) :precondition ()
(visited ?nextpos))) :effect (and (at-robot ?nextpos)
(:goal (and (visited loc-x0-yO0) (visited 7nextpos)))
(visited loc-x0-y1)
(visited loc-x0-y3 ))) What is h/* for P'?
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Precondition + Delete Relaxation in Blocksworld

(:action put_down
:parameters (7x)
:precondition (holding 7x)
:effect (and (not (holding 7?x)) (clear ?x) (handempty) (ontable 7?x)))
(:action unstack
:parameters (?7x ?7y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (clear ?7y) (holding ?x) (not (on ?x ?y))
(not (clear ?x)) (not (handempty))))

a (:goal (and (holding d) (clear b)))
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Precondition + Delete Relaxation in Blocksworld

(:action put_down
:parameters (7x)
:precondition (holding ?x)
:effect (and (not (holding 7?x)) (clear ?x) (handempty) (ontable 7?x)))
(:action unstack
:parameters (7x 7y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
teffect (and (clear ?7y) (holding ?x) (not (on ?x 7y))
(not (clear ?x)) (not (handempty))))

3 (:goal (and (holding d) (clear b)))
C

E Relaxation P':

(:action put_down
:parameters (7x)
:precondition ()
:effect (and (clear ?7x) (handempty) (ontable ?x)))

(:action unstack

:parameters (?7x ?y)
:precondition ()
:effect (and (clear 7y) (holding ?x)))

Plan pickup(d), putdown(b) works for P’.
@ Is then h'* =27
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Precondition + Delete Relaxation in Blocksworld

(:action put_down
:parameters (7x)
:precondition (holding ?x)
:effect (and (not (holding 7?x)) (clear ?x) (handempty) (ontable 7?x)))
(:action unstack
:parameters (7x 7y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
teffect (and (clear ?7y) (holding ?x) (not (on ?x 7y))
(not (clear ?x)) (not (handempty))))

3 (:goal (and (holding d) (clear b)))
@©

E Relaxation P':

(:action put_down
:parameters (7x)
:precondition ()
:effect (and (clear ?7x) (handempty) (ontable ?x)))

(:action unstack

:parameters (?7x ?y)
:precondition ()
:effect (and (clear 7y) (holding ?x)))

Plan pickup(d), putdown(b) works for P’.
@ Is then k" =27 No! k" = 1! Optimal plan is unstack(d,b) &
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Precondition + Delete Relaxation vs. Goal Counting

Let's act “as if every action is possible and no 'undos”':

Drop all preconditions — all is executable.

Drop all negative effects — no undos.

Yet:
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Precondition + Delete Relaxation vs. Goal Counting

Let's act “as if every action is possible and no 'undos”':

Drop all preconditions — all is executable.

Drop all negative effects — no undos.

Yet:
I\ Optimal STRIPS planning with empty preconditions and deletes is still NP-hard!
> (Reduction from MINIMUM COVER, of goal set by add lists.)
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Precondition + Delete Relaxation vs. Goal Counting

Let's act “as if every action is possible and no 'undos”':

Drop all preconditions — all is executable.

Drop all negative effects — no undos.

Yet:
I\ Optimal STRIPS planning with empty preconditions and deletes is still NP-hard!
> (Reduction from MINIMUM COVER, of goal set by add lists.)

Need to approximate the perfect heuristic A’* for P’.

Hence goal counting: just approximate h'* by h¥ = number-of-false-goals.
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Challenge!

© Question

We have a robot with one gripper, two rooms A and B, and n balls to be transported from A
to B. The actions available are mowve, pickBall and dropBall; say
h = “number of balls not yet in room B". Can h be derived as A for a relaxation R?

No.

Yes, just drop the deletes.

Sure, every admissible h can be derived via a relaxation.
I'd rather relax at the beach. 2>
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Challenge!

© Question

We have a robot with one gripper, two rooms A and B, and n balls to be transported from A

to B. The actions available are mowve, pickBall and dropBall; say
h = “number of balls not yet in room B". Can h be derived as A for a relaxation R?

No.
Yes, just drop the deletes.
Sure, every admissible h can be derived via a relaxation.

I'd rather relax at the beach. &>

Incorrect. We can define P’ as the problem of computing the cardinality of a finite set,
and define r as the function that maps a state to the set of balls not yet in room B.
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Challenge!

© Question

We have a robot with one gripper, two rooms A and B, and n balls to be transported from A
to B. The actions available are mowve, pickBall and dropBall; say
h = “number of balls not yet in room B". Can h be derived as A for a relaxation R?

No.

Yes, just drop the deletes.

Sure, every admissible h can be derived via a relaxation.
I'd rather relax at the beach. 2>

Incorrect. We can define P’ as the problem of computing the cardinality of a finite set,
and define r as the function that maps a state to the set of balls not yet in room B.

Incorrect, should drop preconditions (and deletes).
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Challenge!

© Question

We have a robot with one gripper, two rooms A and B, and n balls to be transported from A

to B. The actions available are mowve, pickBall and dropBall; say
h = “number of balls not yet in room B". Can h be derived as A for a relaxation R?

No.
Yes, just drop the deletes.
Sure, every admissible h can be derived via a relaxation.

I'd rather relax at the beach. &>

Incorrect. We can define P’ as the problem of computing the cardinality of a finite set,
and define r as the function that maps a state to the set of balls not yet in room B.
Incorrect, should drop preconditions (and deletes).

Yes. Given admissible i : P — R U{oc}, we can simply define P’ := P and take 7 to be
the identity function idp. In other words, R := (P, idp,h) is a relaxation with h® = h.
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Challenge!

© Question

We have a robot with one gripper, two rooms A and B, and n balls to be transported from A
to B. The actions available are mowve, pickBall and dropBall; say

h = “number of balls not yet in room B". Can h be derived as A for a relaxation R?
No.
Yes, just drop the deletes.
Sure, every admissible h can be derived via a relaxation.

I'd rather relax at the beach. &>

Incorrect. We can define P’ as the problem of computing the cardinality of a finite set,
and define r as the function that maps a state to the set of balls not yet in room B.

Incorrect, should drop preconditions (and deletes).
Yes. Given admissible i : P — R U{oc}, we can simply define P’ := P and take 7 to be
the identity function idp. In other words, R := (P, idp,h) is a relaxation with h® = h.

Me, too! &
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Remarks

A\ s Goal Counting any good?

The goal-counting approximation h = “count the number of goals currently not true” is a
very uninformative heuristic function: %<
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Remarks

A\ s Goal Counting any good?

The goal-counting approximation h = “count the number of goals currently not true” is a
very uninformative heuristic function: %

Range of heuristic values is small (0...|G]|).
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Remarks

A\ s Goal Counting any good?

The goal-counting approximation h = “count the number of goals currently not true” is a
very uninformative heuristic function: %

Range of heuristic values is small (0...|G]|).

We can transform any planning task into an equivalent one where h(s) = 1 for all
non-goal states s. How?
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Remarks

A\ s Goal Counting any good?

The goal-counting approximation h = “count the number of goals currently not true” is a
very uninformative heuristic function: %<
Range of heuristic values is small (0...|G]|).

We can transform any planning task into an equivalent one where h(s) = 1 for all
non-goal states s. How?

» Replace goal by new fact g and add a new action achieving g with precondition G.
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Remarks

A\ s Goal Counting any good?

The goal-counting approximation h = “count the number of goals currently not true” is a
very uninformative heuristic function: %<
Range of heuristic values is small (0...|G]|).

We can transform any planning task into an equivalent one where h(s) = 1 for all
non-goal states s. How?

» Replace goal by new fact g and add a new action achieving g with precondition G.
Ignores almost all structure: Heuristic value does not depend on the actions at all!
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Remarks

A\ s Goal Counting any good?

The goal-counting approximation h = “count the number of goals currently not true” is a
very uninformative heuristic function: %<
Range of heuristic values is small (0...|G]|).

We can transform any planning task into an equivalent one where h(s) = 1 for all
non-goal states s. How?

» Replace goal by new fact g and add a new action achieving g with precondition G.
Ignores almost all structure: Heuristic value does not depend on the actions at all!
» Dropping preconditions is “too much”.
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Remarks

A\ s Goal Counting any good?

The goal-counting approximation h = “count the number of goals currently not true” is a
very uninformative heuristic function: %<
Range of heuristic values is small (0...|G]|).

We can transform any planning task into an equivalent one where h(s) = 1 for all
non-goal states s. How?

» Replace goal by new fact g and add a new action achieving g with precondition G.
Ignores almost all structure: Heuristic value does not depend on the actions at all!
» Dropping preconditions is “too much”.
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Remarks

A\ s Goal Counting any good?

The goal-counting approximation h = “count the number of goals currently not true” is a
very uninformative heuristic function: %<
Range of heuristic values is small (0...|G]|).

We can transform any planning task into an equivalent one where h(s) = 1 for all
non-goal states s. How?

» Replace goal by new fact g and add a new action achieving g with precondition G.
Ignores almost all structure: Heuristic value does not depend on the actions at all!
» Dropping preconditions is “too much”.

¢ Let's next see how to compute much better (more informed) heuristic functions (still
automatically from the PDDL description!).
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Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Real world: (before)
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Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Real world:  (after)
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Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Relaxed world: (before)
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Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Relaxed world: (after)
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Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Real world: (before)

78 ™
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Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Real world:  (after)
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Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Relaxed world: (before)

78 ™

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 154/248



Reminder: Relaxing the World by Ignoring Delete Lists

“What was once true remains true forever.”

Relaxed world: (after)
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Heuristics for Classical Planning

e Heuristics derived from relaxation where delete-lists of actions are dropped.
» That is, delete all (not ...) clauses in the each action’s :effect in the PDDL

e This simplification is called the delete-relaxation.
* Define delete-relaxation heuristic k™ (s) as:

B (s) £ W (s)

where P’ is delete-relaxation of P, P(s) is P but with s as initial state, and h},(s) is
optimal cost of P(s).
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Heuristics for Classical Planning

e Heuristics derived from relaxation where delete-lists of actions are dropped.

» That is, delete all (not ...) clauses in the each action’s :effect in the PDDL
e This simplification is called the delete-relaxation.

* Define delete-relaxation heuristic k™ (s) as:

B (s) £ W (s)

where P’ is delete-relaxation of P, P(s) is P but with s as initial state, and h},(s) is

optimal cost of P(s).

/' Delete relaxation is admissible (i.e., optimistic):
» Applying a relaxed action can only ever make more facts true.

» That can only be good, i.e., cannot render the task unsolvable

v/ Keeps actions’ preconditions, and thus the causal “structure”

© ... but what does it “mean”?
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Visiting Australia Cities with A

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C' = {Syd, Ade, Bri, Per, Ade, Dar}.
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Visiting Australia Cities with A

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C' = {Syd, Ade, Bri, Per, Ade, Dar}.

® P: at(x) and visited(x), for z € C.
® A: drive(x,y) where 2 # y have a high-way.

1 x,y € {Syd, Bri}

5 xy € {Syd, Ade}
3.5 z,y € {Ade, Per}
4  z,y € {Ade, Dar}

c(drive(z,y)) =

o [ = {at(Syd),visited(Syd)};
* G = {at(Syd)} U {visited(z) | x € C}.
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Visiting Australia Cities with A

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C' = {Syd, Ade, Bri, Per, Ade, Dar}.

® P: at(x) and visited(x), for z € C.
® A: drive(x,y) where 2 # y have a high-way.

1 x,y € {Syd, Bri}

5 x,y € {Syd, Ade}
3.5 z,y € {Ade, Per}
4  z,y € {Ade, Dar}

c(drive(z,y)) =

o [ = {at(Syd),visited(Syd)};
* G = {at(Syd)} U {visited(z) | x € C}.

Planning vs. Relaxed Planning:

e Optimal plan:
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Visiting Australia Cities with A

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C' = {Syd, Ade, Bri, Per, Ade, Dar}.

® P: at(x) and visited(x), for z € C.
A: drive(z,y) where x # y have a high-way.

1 x,y € {Syd, Bri}

5 x,y € {Syd, Ade}
3.5 z,y € {Ade, Per}
4  z,y € {Ade, Dar}

c(drive(z,y)) =

I = {at(Syd),visited(Syd)};
G = {at(Syd)} U {visited(z) | x € C}.

Planning vs. Relaxed Planning:

e Optimal plan: drive(Syd, Bri), drive(Bri, Syd), drive(Syd, Ade), drive(Ade, Per),
drive(Per, Ade), drive(Ade, Dar), drive(Dar, Ade), drive(Ade, Syd).

® Optimal relaxed:
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Visiting Australia Cities with h™"

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C' = {Syd, Ade, Bri, Per, Ade, Dar}.

® P: at(x) and visited(x), for x € C.
e A: drive(x,y) where x # y have a high-way.

1 z,y € {Syd, Bri}

5 x,y € {Syd, Ade}
3.5 x,y € {Ade, Per}
4  z,y € {Ade, Dar}

c(drive(z,y)) =

o [ = {at(Syd),visited(Syd)};
* G = {at(Syd)} U {visited(z) | x € C}.
Planning vs. Relaxed Planning;:
e Optimal plan: drive(Syd, Bri), drive(Bri, Syd), drive(Syd, Ade), drive(Ade, Per),
drive(Per, Ade), drive(Ade, Dar), drive(Dar, Ade), drive(Ade, Syd).
® Optimal relaxed: drive(Syd, Bri), drive(Syd, Ade), drive(Ade, Per), drive(Ade, Dar)

* So, h*(I) =
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Visiting Australia Cities with h™"

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C' = {Syd, Ade, Bri, Per, Ade, Dar}.

® P: at(x) and visited(x), for x € C.
e A: drive(x,y) where x # y have a high-way.

1 z,y € {Syd, Bri}

5 x,y € {Syd, Ade}
3.5 x,y € {Ade, Per}
4  z,y € {Ade, Dar}

c(drive(z,y)) =

o [ = {at(Syd),visited(Syd)};
* G = {at(Syd)} U {visited(z) | x € C}.
Planning vs. Relaxed Planning;:
e Optimal plan: drive(Syd, Bri), drive(Bri, Syd), drive(Syd, Ade), drive(Ade, Per),
drive(Per, Ade), drive(Ade, Dar), drive(Dar, Ade), drive(Ade, Syd).
® Optimal relaxed: drive(Syd, Bri), drive(Syd, Ade), drive(Ade, Per), drive(Ade, Dar)

® So, h*(I) =20
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Visiting Australia Cities with h™"

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C' = {Syd, Ade, Bri, Per, Ade, Dar}.

® P: at(x) and visited(x), for x € C.
e A: drive(x,y) where x # y have a high-way.

1 z,y € {Syd, Bri}

5 x,y € {Syd, Ade}
3.5 x,y € {Ade, Per}
4  z,y € {Ade, Dar}

c(drive(z,y)) =

o [ = {at(Syd),visited(Syd)};
* G = {at(Syd)} U {visited(z) | x € C}.
Planning vs. Relaxed Planning;:
e Optimal plan: drive(Syd, Bri), drive(Bri, Syd), drive(Syd, Ade), drive(Ade, Per),
drive(Per, Ade), drive(Ade, Dar), drive(Dar, Ade), drive(Ade, Syd).
® Optimal relaxed: drive(Syd, Bri), drive(Syd, Ade), drive(Ade, Per), drive(Ade, Dar)

® So, h*(I) =20 and h*(I) =
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Visiting Australia Cities with h™"

Problem: starting from Sydney, visit Brisbane, Adelaide, Perth, and Darwin. Can only use
highways. Take set of cities C' = {Syd, Ade, Bri, Per, Ade, Dar}.

® P: at(x) and visited(x), for x € C.
e A: drive(x,y) where x # y have a high-way.

1 z,y € {Syd, Bri}

5 x,y € {Syd, Ade}
3.5 x,y € {Ade, Per}
4  z,y € {Ade, Dar}

c(drive(z,y)) =

o [ = {at(Syd),visited(Syd)};
* G = {at(Syd)} U {visited(z) | x € C}.
Planning vs. Relaxed Planning;:
e Optimal plan: drive(Syd, Bri), drive(Bri, Syd), drive(Syd, Ade), drive(Ade, Per),
drive(Per, Ade), drive(Ade, Dar), drive(Dar, Ade), drive(Ade, Syd).
® Optimal relaxed: drive(Syd, Bri), drive(Syd, Ade), drive(Ade, Per), drive(Ade, Dar)

® So, h*(I) =20 and ht(I) = 10. z
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What does h™ give us?
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What does h™ give us?
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What does h™ give us?
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What does h™ give us?
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What does h™ give us? _
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What does h™ give us?
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h*(Visit Autralia) = Minimum Spanning Tree!
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Challenge!

3805 8489 @ menti.com

© Question: What is At for this domain?

Manhattan Distance.
h*.

Horizontal distance.

Vertical distance.
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Challenge!

3805 8489 @ menti.com

© Question: What is At for this domain?

Manhattan Distance. No, relaxed plans can't walk through walls.
h*.

Horizontal distance.

Vertical distance.
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Challenge!

3805 8489 @ menti.com

© Question: What is At for this domain?

Manhattan Distance. No, relaxed plans can't walk through walls.

h*. Yes, optimal plan = shortest path = relaxed plan (deletes do not matter because
“shortest paths never walk back").

Horizontal distance.

Vertical distance.
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Challenge!

3805 8489 @ menti.com

© Question: What is At for this domain?

Manhattan Distance. No, relaxed plans can't walk through walls.

h*. Yes, optimal plan = shortest path = relaxed plan (deletes do not matter because
“shortest paths never walk back").

Horizontal distance. No, relaxed plans must move both horizontally and vertically.
Vertical distance. No, relaxed plans must move both horizontally and vertically.
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h* as a Relaxation Heuristic

P R} U {oo}

| where, for all P € P:
h*(r(P)) < h*(P).
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h* as a Relaxation Heuristic

P Ra’ U{oo}

| where, for all P € P:
h*(r(P)) < h*(P).

For ht = h*or:

Problem P € P: All STRIPS planning tasks.

e Simpler problem P & P’: All STRIPS planning tasks with empty deletes.
e Perfect heuristic b/ for P': Optimal plan cost on P’.

® Transformation r: Drop the deletes; drop all (not ...) terms in :effects
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h* as a Relaxation Heuristic

P R} U {oo}

| where, for all P € P:
h'*(r(P)) < h*(P).

h'*

For ht = h*or:

Problem P € P: All STRIPS planning tasks.

e Simpler problem P & P’: All STRIPS planning tasks with empty deletes.
e Perfect heuristic b’ for P': Optimal plan cost on P’.

® Transformation r: Drop the deletes; drop all (not ...) terms in :effects

© Questions

Is this a native relaxation?

Is this relaxation efficiently constructible?
Is this relaxation efficiently computable?
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h* as a Relaxation Heuristic

P R} U {oo}

| where, for all P € P:
h'*(r(P)) < h*(P).

h'*

For ht = h*or:

Problem P € P: All STRIPS planning tasks.

e Simpler problem P & P’: All STRIPS planning tasks with empty deletes.
e Perfect heuristic b’ for P': Optimal plan cost on P’.

® Transformation r: Drop the deletes; drop all (not ...) terms in :effects

© Questions

Is this a native relaxation? Yes!

Is this relaxation efficiently constructible?
Is this relaxation efficiently computable?

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 159/248



h* as a Relaxation Heuristic

P R} U {oo}

| where, for all P € P:
h'*(r(P)) < h*(P).

h'*

For ht = h*or:

Problem P € P: All STRIPS planning tasks.

e Simpler problem P & P’: All STRIPS planning tasks with empty deletes.
e Perfect heuristic b’ for P': Optimal plan cost on P’.

® Transformation r: Drop the deletes; drop all (not ...) terms in :effects

© Questions

Is this a native relaxation? Yes!

Is this relaxation efficiently constructible? Yes!
Is this relaxation efficiently computable?
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h* as a Relaxation Heuristic

P R} U {oo}

| where, for all P € P:
h'*(r(P)) < h*(P).

h'*

For ht = h*or:

Problem P € P: All STRIPS planning tasks.

e Simpler problem P & P’: All STRIPS planning tasks with empty deletes.
e Perfect heuristic b’ for P': Optimal plan cost on P’.

® Transformation r: Drop the deletes; drop all (not ...) terms in :effects

© Questions

Is this a native relaxation? Yes!

Is this relaxation efficiently constructible? Yes!
Is this relaxation efficiently computable? No! (=5
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Perfect delete-relaxation A™ is hard!

Unfortunately, definition A*(s) = h},(s) not

suitable computationally:

e Solving P'(s) optimally as difficult as Yo Umwl:':’“”“’p'ete
solving P(s) optimally (NP-hard).
® Hardness proved by reduction from SAT:
“When operators are restricted to one

1 postcond

1 + precond.
1 + postcond

* postconds.

| 0 precond.

|[] precond.

2 postconds. 3 +postconds

positive precondition and one positive I T
postcondition, PLANMIN remains in- l |
1 precond. 0 precond. 0 precond.
traCtable.” (By/ander'94) * postconds. 1 postcond. | 2 -+ postconds
g goals ]
® Remember, heuristics need to be polynomial
com puted fastl Figure 2: Complexity Results for PLANMIN
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Perfect delete-relaxation A™ is hard!

Unfortunately, definition A*(s) = h},(s) not
suitable computationally:
e Solving P'(s) optimally as difficult as
solving P(s) optimally (NP-hard).
® Hardness proved by reduction from SAT:
“When operators are restricted to one
positive precondition and one positive
postcondition, PLANMIN remains in-
tractable.” (Bylander'94)

® Remember, heuristics need to be
computed fast!

1 postcond

NP-complete
0 precond.

* + preconds

* postconds.

1 + precond. 0 precond. 0 precond.

1 + postcond 2 postconds. 3 +postconds
1 precond. 0 precond. 0 precond.
* postconds. 1 postcond. 2 +postconds
g goals

polynomial

Figure 2: Complexity Results for PLANMIN

! Yet, finding one plan for P'(s), not necessarily optimal, is easy. Why? Next slide!
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Perfect delete-relaxation A™ is hard!

Unfortunately, definition A*(s) = h},(s) not
suitable computationally:

e Solving P'(s) optimally as difficult as
solving P(s) optimally (NP-hard).
® Hardness proved by reduction from SAT:
“When operators are restricted to one
positive precondition and one positive
postcondition, PLANMIN remains in-
tractable.” (Bylander'94)

® Remember, heuristics need to be
computed fast!

NP-complete

* + preconds 0 precond.

1 postcond * postconds.

1 + precond. 0 precond. 0 precond.

1 + postcond 2 postconds. 3 +postconds
1 precond. 0 precond. 0 precond.
* postconds. 1 postcond. 2 +postconds
g goals

polynomial

Figure 2: Complexity Results for PLANMIN

! Yet, finding one plan for P'(s), not necessarily optimal, is easy. Why? Next slide!
* All implemented systems using the delete relaxation approximate ™ in one or the other
way. We now look at the the most wide-spread approaches to do so...

- (not , vi, )
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Why solving P’(s) is “easy”?

® Key Idea: Delete-free STRIPS problems like P’(s) are fully decomposable

If plan 71 achieves G1 and plan 7o achieves G2, then plan 71 - w9 achieves G and Gs.
= So, plans m, for each atom p yield plans for any goal G (with lots of “redundancy”).
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Why solving P’(s) is “easy”?

® Key Idea: Delete-free STRIPS problems like P'(s) are fully decomposable

If plan 71 achieves G1 and plan 7o achieves G2, then plan 71 - w9 achieves G and Gs.
So, plans m, for each atom p vyield plans for any goal G (with lots of “redundancy”).

Let's compute how many steps are needed to reach each atom p:
Procedure: Atom p reachable in k steps with support a, from state s

Atom p reachable in 0 steps with no action support if p € s.

Atom p reachable in i + 1 steps with support a,, if not reachable in i steps or less, and
preconditions p; of a, reachable in ¢ steps or less.
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Why solving P’(s) is “easy”?

® Key Idea: Delete-free STRIPS problems like P'(s) are fully decomposable

If plan 71 achieves G1 and plan 7o achieves G2, then plan 71 - w9 achieves G and Gs.
So, plans m, for each atom p vyield plans for any goal G (with lots of “redundancy”).

Let's compute how many steps are needed to reach each atom p:
Procedure: Atom p reachable in k steps with support a, from state s

Atom p reachable in 0 steps with no action support if p € s.

Atom p reachable in i + 1 steps with support a,, if not reachable in i steps or less, and
preconditions p; of a, reachable in ¢ steps or less.

® Procedure terminates in # of steps bounded by number of atoms
» ... and if p not reachable, there is no plan for p in either P'(s) or P(s)

® Supporters a, needed to get to goal G of P yield (relaxed) plan 7’(s) for P'(s)
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Max and Additive Heuristics

For all atoms p:

o | O if
h(p;sr’:f{ npes

MiNlgeadqa [cost(a) + h(Pre(a); s)]  otherwise

Observe: h(Pre(a);s) is on set of propositions — Pre(a) may contain many atoms.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

162/248



Max and Additive Heuristics
For all atoms p:

h( . S) def 0 if peEs
b MiNlgeadqa [cost(a) + h(Pre(a); s)]  otherwise

Observe: h(Pre(a);s) is on set of propositions — Pre(a) may contain many atoms.
The Max Heuristic hpax

For sets of atoms C, define:

h(C; s) = max h(r;
(C;5) = maxh(r; )

Resulting heuristic function:

hanax(s) = h(G; s)

® # of steps to reach all atoms in G.

® Admissible, but often too optimistic.
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Max and Additive Heuristics

For all atoms p:

der ] 0 if pes
hp;s) =9 . :
MiNlgeadqa [cost(a) + h(Pre(a); s)]  otherwise
Observe: h(Pre(a);s) is on set of propositions — Pre(a) may contain many atoms.
The Max Heuristic Ay The Additive Heuristic h,qq
For sets of atoms C, define: For sets of atoms C, define:
WC: s) Z ma .y o o) & .
(C;s) max h(r;s) h(C; s) Z h(r;s)
reC
Resulting heuristic function: Resulting heuristic function:
hmaX<3> d:ef h(G7 S) hadd(s) g h(G, 8)
® # of steps to reach all atoms in G. ® sum of steps to reach each atom in G.
® Admissible, but often too optimistic. ® Not admissible, but often informative.
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Example

Problem P = (F,I,0,G) where:

o F={pi,qi|i€{0,...,n}}
* I ={po,qo}

* G ={pn,qn}

[ ]

O contains actions a; and b;, for i{0,...,n —1}:
> Pre(a;) = {pi}, Add(a;) = {pi+1}, Del(a;) = {p;}
> Pre(b;) = {q;}, Add(b;) = {qi+1}, Del(b;) = {q;}

For the initial state I:
What is Amax(I)?
What is h,qa(1)?
What is relaxed plan obtained from Apax?
What is optimal cost h}(1)7?

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 163/248



Alternative Graphic Procedure to Compute Max Heuristic
Procedure builds propositional and action layers P; and A; ignoring deletes from state s:

- )
- -
PO A0 P1 Al
B = {plpes}
A; = {ala€O,Pre(a) C P}
Py = PU{p|acA;pecAdd(a)} (ignore deletes!)

Max Heuristic Apax

The max heuristic is implicitly represented in this layered graph:

hmax(s) = smallest i such that each p € G is in some layer Py, with k <
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Planning Graph to Compute Ay

Eggs, flour, and water are needed to bake (and eat) a cake, and to make playdo, have fun,
and be happy! Goal is to be happy #& and feel satisfied ==

P A[) Pl Al PQ
Have(eggs) - ey HQUE(EGES) ey Have(eggs)

BAKE ——MM % Have(cake) ) Have(cake)
I EAT(BAKE) ——— Satisfied

Have(fLour) - e eeeeeeeeieiiid S Have( fLOUT) - evereresesesisss s Have(flour)
Happy
Py _—

PLAYDO ———— Have(playdo) » Have(playdo)

\/

\/

H(L’Ue(water) ......................................................... > H(L’Ue(’wate'r) ......................................................... > Ha’ue(’u)ate'r’)
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Planning Graph to Compute Ay

Eggs, flour, and water are needed to bake (and eat) a cake, and to make playdo, have fun,
and be happy! Goal is to be happy #& and feel satisfied ==

P A[) P1 Al PQ
Have(eggs) ey Hape(eggs) ey Have(eggs)
\ BAKE ——% Have(cake) wiweeeneennnninnnoy Have(cake)
/ I EAT(BAKE) ——— Satisfied
HaUe(FLOUT) +wv-rvvesreeesseessseiisi ) S HQUE(FLOUT) +rvvvvreeessseesssseessis s Have(flour)
\ PLAY ———— Happy
/ PLAYDO —89 % Have(playdo) ........................................................ » Have(playdo)
Ha’Ue(wateT‘) ......................................................... > H(L’Ue(’wate'r) ......................................................... > Ha’ue(’u)ate'r’)

¥hmax = max{h(Happy), h(Satisfied)} = max{2,2} =2 (G appears first in level 2!)

h(Happy) = 1 + h(Have(playdo)) = 1 + (1 + h(Have(water))) =1+ (1+0) =2
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The Additive and Max Heuristics: So What?

Summary of typical issues in practice with /., and h,,:

Both h,4q and hApax can be computed reasonably quickly.
hmax is admissible, but is typically far too optimistic.
h.qqa is not admissible, but is typically a lot more informed than Aax.

But h,qq may overcount by ignoring positive interactions, i.e., sub-plans shared
between sub-goals.
Such overcounting can result in dramatic over-estimates of h*!!
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The Additive and Max Heuristics: So What?

Summary of typical issues in practice with /., and h,,:

Both h,4q and hApax can be computed reasonably quickly.
hmax is admissible, but is typically far too optimistic.
h.qqa is not admissible, but is typically a lot more informed than Aax.

But h,qq may overcount by ignoring positive interactions, i.e., sub-plans shared
between sub-goals.
Such overcounting can result in dramatic over-estimates of h*!!

Relaxed plans (next) is a way to reduce this kind of over-counting.
e Similar to h,4q, but can account for positive interactions and are much less prone to

overcounting.
® They achieve this by adding another technology layer — relaxed plan extraction — on top

of hmax OF Naga.
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Relaxed Plans and Best Supporters

® Basic Idea for relaxed plans

First compute a best-supporter action a,, for every fact p € F: action that is deemed to
be the cheapest achiever of p (within the relaxation).

Then extract a relaxed plan from best supporters of all goal atoms.

The best-supporter can be based directly on hApax or h,qq heuristics by recursively
collecting best supporters backwards from the goal, where a,, is best support for p ¢ s:

ap = argmin|cost(a) + h(Pre(a))]

a€Add(p)
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Relaxed Plans and Best Supporters

® Basic Idea for relaxed plans

First compute a best-supporter action a,, for every fact p € F: action that is deemed to
be the cheapest achiever of p (within the relaxation).

Then extract a relaxed plan from best supporters of all goal atoms.

The best-supporter can be based directly on hApax or h,qq heuristics by recursively
collecting best supporters backwards from the goal, where a,, is best support for p ¢ s:

ap = argmin|cost(a) + h(Pre(a))]

a€Add(p)

A plan 7(p; s) for p in delete-relaxation can be computed backwards as:

(p: 5) 0 ifpes
m(p;s) = _
7 ap UUgepre(a, T(@;s)  otherwise
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Relaxed Plans and Agp

The best-supporter wrt hpax (cheapest achiever of p based on hpax):

a, = argmin|cost(a) + hmax(Pre(a))]

a€Add(p)
A plan 7(p;s) = O - Op_1 --- Oy for p in delete-relaxation can be computed backwards as:
(p: ) e | 0 if pes
m(p;s) = .
{ap} UlU epreqa, ™(@;5) otherwise

hew: # of different a,-supporters needed to get to G-

her(s) = | U m(p; s)|

peG

using h = hmax for the best supporters.
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Planning Graphs for Relaxed Plans

Consider three atoms p, g1, and g2, and three actions a,, ag4,, and agy,, that make them true,
respectively. Precondition of a,, is empty, but both a4, and = a4, require atom p to be true.
Goal is {g1, g2} and initial state I = ) (nothing is true).

Py A() P Ay Py

True 3 ap > P \ ......................................... »D
gy ————————— 92

* h*(I)=3 (optimal plan is ay, - ag, - ag,).
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Planning Graphs for Relaxed Plans

Consider three atoms p, g1, and g2, and three actions a,, ag4,, and agy,, that make them true,
respectively. Precondition of a,, is empty, but both a4, and = a4, require atom p to be true.
Goal is {g1, g2} and initial state I = ) (nothing is true).

Py A() P Ay Py

True 3 ap > P \ ......................................... »D
gy ————————— 92

* h*(I)=3 (optimal plan is ay, - ag, - ag,).

® hmax(I) = max{h(gi;I),h(g1; 1)} =2 (goal appears at level 2 - optimistic!)
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Planning Graphs for Relaxed Plans

Consider three atoms p, g1, and g2, and three actions a,, ag4,, and agy,, that make them true,
respectively. Precondition of a,, is empty, but both a4, and = a4, require atom p to be true.
Goal is {g1, g2} and initial state I = ) (nothing is true).

Py A() P Ay Py

/ o ———————— 4%
True > ap 4

* h*(I)=3 (optimal plan is ay, - ag, - ag,).
® hmax(I) = max{h(g1;I),h(g1;1)} =2 (goal appears at level 2 - optimistic!)

® haaaI) = h(gi; 1)+ h(gi; 1) =2+2=4 (pessimistic, counts a, twice!)
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Planning Graphs for Relaxed Plans

Consider three atoms p, g1, and g2, and three actions a,, ag4,, and agy,, that make them true,
respectively. Precondition of a,, is empty, but both a4, and = a4, require atom p to be true.
Goal is {g1, g2} and initial state I = ) (nothing is true).

Py A() P Ay Py

True 3 ap > P \ ......................................... »D
gy ————————— 92

* h*(I)=3 (optimal plan is ay, - ag, - ag,).
® hmax(I) = max{h(g1;I),h(g1;1)} =2 (goal appears at level 2 - optimistic!)
® hoaa(I) =h(g1; 1)+ h(g1; 1) =2+2=4 (pessimistic, counts a, twice!)

o hee(T) = [{{ap} U{ag ag})l = 14+2=3  perfect!
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Other heuristics...
Key development in planning in the 90's...

h* (Hoffmann & Nebel, '01)

hmax and h,q, (Bonet & Geffner, '01)
her (Hoffmann & Nebel, '01)

hP™ar (Mirkis & Domshlak, '07)

h® (Keyder & Geffner, '08

Relaxations

Critical paths ~ ® A™ (Haslum & Geffner, '00) with h! = hpax

Abstractions ~ ® PDBs (Edelkamp, '01; Haslum et al., '05, '07)
Merge & Shrink (Helmert et al., '07,'14; Katz et al, '12; Sievers et al., '14)

Landmarks ~ ® Landmark count (Hoffmann et al., '04)
h™ and h4 (Karpas & Domshlak, '09)
LM-cut (Helmert & Domshlak, '10)
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Example

Problem P = (F,I,0,G) where:
° F:{pza(h | 22077n}

o I= {pO’QO}
® G = {pn,Qn}
® O contains actions a; and b;, i =0,...,n—1:

> Pre(a;) = {pi}, Add(a;) = {pi+1}, Del(ai) = {pi}
> Pre(bi) = {g:}, Add(bi) = {git1}, Del(bi) = {g:}

For the initial state I:
What is relaxed plan obtained for hgp(1)?
What is hpp(1)7?
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Example

Problem P = (F,I,0,G) where:
° F:{pza(h | Z:O,,TL}

o I= {pO’qO}
® G = {pn,Qn}
® O contains actions a; and b;, i =0,...,n—1:

> Pre(a;) = {pi}, Add(a;) = {pi+1}, Del(ai) = {pi}
> Pre(bi) = {g:}, Add(bi) = {git1}, Del(bi) = {g:}

For the initial state I:
What is relaxed plan obtained for hgp(1)?
What is hpp(1)7?
What happens if we have actions ¢; for i even:
> Pre(c;) = {pi,qi}, Add(c;) = {pi+1,qi+1}, Del(c;) = {pi, qi}
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Exercise
Problem P = (F,I,0,G) where:
® F:{pzaql | ZZO,,TL}
* I={po,q}

* G={pn,qn}
® (O contains actions a;, b;, and ¢;:

> Pre(a;) = {p;}, Add(a;) = {piy1}, Del(a;) = {p;}, fori=10,...,n — 1.
> Pre(b;) = {¢;}, Add(b;) = {qi+1}, Del(b;) = {¢;}, fori=0,...,n— 1.

» Pre(c;) = {pi,¢;}, Add(c;) = {pit1,¢i+1}, Del(e;) = {pi,qi}, for i =0,...,n— 1 such that
i mod 2 = 0 (that is, action ¢; exists when i is even).

Calculate h™(I).

Calculate h,qq(1).

Calculate hpax(I).

Calculate hpp(I). What is relaxed plan obtained for hpp(I)?
Calculate h*(I).
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Example Systems

HSP [Bonet and Geffner, Al-01]

Search algorithm: Greedy best-first search.
Search control: haqq.

FF [Hoffmann and Nebel ,JAIR-01]

Search algorithm: Enforced hill-climbing.

Search control: hrr extracted from hmax supporter function; helpful actions pruning (basically expand
only those actions contained in the relaxed plan).

LAMA [Richter and Westphal, JAIR-10]

Search algorithm: Multiple-queue greedy best-first search.
Search control: hrr + a landmarks heuristic (similar to goal counting); for each, one search queue all

actions, one search queue only helpful actions.

BFWS [Lipovetzky and Geffner, AAAI-17]

Search algorithm: best-first width search.

Search control: novelty + variant of hrr + goal counting.
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Modern Planners: EHC Search, Helpful Actions, Landmarks

e First generation of heuristic search planners like HSP, searched the graph defined by
state model S(P) using standard search algorithms like Greedy Best-First or WA*, and
heuristics like h,44.

® Second generation planners like FF and LAMA beyond this in two ways:
They exploit the structure of the heuristic and/or problem further:

» Helpful Actions: actions most relevant in relaxation.
» Landmarks: implicit problem subgoals.

They use novel search algorithms:

» Enforced Hill Climbing (EHC).
» Multi-Queue Best First Search.

® The result is that they can solve huge problems, very fast. Not always though...
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Modern Planners: EHC Search, Helpful Actions, Landmarks

e First generation of heuristic search planners like HSP, searched the graph defined by
state model S(P) using standard search algorithms like Greedy Best-First or WA*, and
heuristics like h,44.

® Second generation planners like FF and LAMA beyond this in two ways:
They exploit the structure of the heuristic and/or problem further:

» Helpful Actions: actions most relevant in relaxation.
» Landmarks: implicit problem subgoals.

They use novel search algorithms:

» Enforced Hill Climbing (EHC).
» Multi-Queue Best First Search.

® The result is that they can solve huge problems, very fast. Not always though...

® The delete relaxation is still used at large, specially since the wins of LAMA in the
satisficing planning tracks of IPC'08 and IPC'11.

® More generally, the relaxation principle is very generic and applicable in many contexts.
This is where all started: Planning as Heuristic Search [Bonet and Geffner, Al-01].
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Search in the FF Planner

* Heuristic in FF is hgr(s) given by size |7/(s)| of relaxed plan 7/(s) for P'(s).

® The search in FF split in two phases:
First phase, called EHC (Enforced Hill Climbing) is incomplete but fast:
» Starting with s = so, EHC does a breadth-first search from s using only “helpful actions”
until a state s’ is found such that hrr(s") < her(s).

> |f such a state s’ is found, the process is repeated starting with s = s’. Else, the EHC fails,
and the second phase is triggered.

Second phase is a Greedy Best-First search guided by hp,: complete but slow.

e Action deemed helpful in s if applicable in s and adds a goal or precondition of action in
“relaxed plan” 7'(s).
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Part 3: Classical Planning: Methods

B Complexity of Planning

Bl Planning as heuristic search
m Relaxations
m Delete-relaxation h™
m From AT to Amax, Paaqa and Ape
m State of the art classical planners

Planning as SAT
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Part 3: Classical Planning: Methods

Planning as SAT
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Planning as SAT

e SAT: determine if there is a truth assignment that satisfies a set of clauses:

(xVoyV-oz)A(—zVyVz)A(yVz)A..
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Planning as SAT

e SAT: determine if there is a truth assignment that satisfies a set of clauses:
(xVoyV-oz)A(—zVyVz)A(yVz)A..

® Maps planning problem P = (F, O, I, G) with horizon n into a set of clauses C(P,n),
solved by SAT solvers.
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Planning as SAT

e SAT: determine if there is a truth assignment that satisfies a set of clauses:
(xV-yV-z)AN(—xVyVz)AyVz)A..

® Maps planning problem P = (F, O, I, G) with horizon n into a set of clauses C(P,n),
solved by SAT solvers.

» Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.
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Planning as SAT

e SAT: determine if there is a truth assignment that satisfies a set of clauses:
(xV-yV-z)AN(—xVyVz)AyVz)A..

® Maps planning problem P = (F, O, I, G) with horizon n into a set of clauses C(P,n),
solved by SAT solvers.

» Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

® Formula/theory C (P, n) includes variables pg, p1,...,p, and ag,a,...,a,—1 for each
p€ Fandac€O.
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Planning as SAT

e SAT: determine if there is a truth assignment that satisfies a set of clauses:
(xV-yV-z)AN(—xVyVz)AyVz)A..

® Maps planning problem P = (F, O, I, G) with horizon n into a set of clauses C(P,n),
solved by SAT solvers.

» Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

® Formula/theory C (P, n) includes variables pg, p1,...,p, and ag,a,...,a,—1 for each
p€ Fandac€O.

P p;: atom p is true at time step 1.
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Planning as SAT

e SAT: determine if there is a truth assignment that satisfies a set of clauses:
(xV-yV-z)AN(—xVyVz)AyVz)A..

® Maps planning problem P = (F, O, I, G) with horizon n into a set of clauses C(P,n),
solved by SAT solvers.

» Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

® Formula/theory C (P, n) includes variables pg, p1,...,p, and ag,a,...,a,—1 for each
p€ Fandac€O.

P p;: atom p is true at time step 1.
» a;: action a is executed/selected at time step .
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Planning as SAT

SAT: determine if there is a truth assignment that satisfies a set of clauses:

(xV-yV-z)AN(—xVyVz)AyVz)A..

Maps planning problem P = (F, O, I, G) with horizon n into a set of clauses C'(P,n),
solved by SAT solvers.

» Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

Formula/theory C'(P,n) includes variables po, p1,...,p, and ag,a1,...,a,—1 for each
p€ Fandac€O.

P p;: atom p is true at time step 1.
» a;: action a is executed/selected at time step .

e C(P,n) satisfiable iff there is a plan of length no greater than n.
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Planning as SAT

SAT: determine if there is a truth assignment that satisfies a set of clauses:

(xV-yV-z)AN(—xVyVz)AyVz)A..

Maps planning problem P = (F, O, I, G) with horizon n into a set of clauses C'(P,n),
solved by SAT solvers.

» Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

Formula/theory C'(P,n) includes variables po, p1,...,p, and ag,a1,...,a,—1 for each
p€ Fandac€O.

P p;: atom p is true at time step 1.
» a;: action a is executed/selected at time step .

e C(P,n) satisfiable iff there is a plan of length no greater than n.

Such a plan can be read from truth valuation that satisfies C'(P,n).
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Planning as SAT

SAT: determine if there is a truth assignment that satisfies a set of clauses:

(xV-yV-z)AN(—xVyVz)AyVz)A..

Maps planning problem P = (F, O, I, G) with horizon n into a set of clauses C'(P,n),
solved by SAT solvers.

» Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

Formula/theory C'(P,n) includes variables po, p1,...,p, and ag,a1,...,a,—1 for each
p€ Fandac€O.

P p;: atom p is true at time step 1.
» a;: action a is executed/selected at time step .

e C(P,n) satisfiable iff there is a plan of length no greater than n.

Such a plan can be read from truth valuation that satisfies C'(P,n).

SAT-based planners like SATPLAN or Madagascar use this encoding.
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Planning as SAT

SAT: determine if there is a truth assignment that satisfies a set of clauses:

(xV-yV-z)AN(—xVyVz)AyVz)A..

Maps planning problem P = (F, O, I, G) with horizon n into a set of clauses C'(P,n),
solved by SAT solvers.

» Use conflict-driven clause learning algorithms (CDCL), an optimisation of DPLL.

Formula/theory C'(P,n) includes variables po, p1,...,p, and ag,a1,...,a,—1 for each
p€ Fandac€O.

P p;: atom p is true at time step 1.
» a;: action a is executed/selected at time step .

e C(P,n) satisfiable iff there is a plan of length no greater than n.

Such a plan can be read from truth valuation that satisfies C'(P,n).

SAT-based planners like SATPLAN or Madagascar use this encoding.

» Winners of the 2004 and 2006 IPCs optimal track; 2nd in 2014 agile track; part of top
portfolio planners in 2023.
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Theory C(P,n) for Problem P = (F,0,I,G)

e Init: py forp € I, —qy for g € F\ I
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Theory C(P,n) for Problem P = (F,0,I,G)

e Init: py forp € I, —qy for g € F\ I
e Goal: p, forpe G
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Theory C(P,n) for Problem P = (F,0,I,G)
e Init: py forp € I, —qy for g € F\ I

e Goal: p, forpe G

® Actions: Fori=0,1,...,n — 1, and each action a € O:
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Theory C(P,n) for Problem P = (F,0,I,G)

e Init: py forp € I, —qy for g € F\ I
e Goal: p, forpe G

® Actions: Fori=0,1,...,n — 1, and each action a € O:
» a; D p; for p € Prec(a)
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Theory C(P,n) for Problem P = (F,0,I,G)

e Init: py forp € I, —qy for g € F\ I
e Goal: p, forpe G

® Actions: Fori=0,1,...,n — 1, and each action a € O:
» a; D p; for p € Prec(a)
» a; D p;+1 for each p € Add(a)
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Theory C(P,n) for Problem P = (F,0,I,G)

e Init: py forp € I, —qy for g € F\ I
e Goal: p, forpe G

® Actions: Fori=0,1,...,n — 1, and each action a € O:
» a; D p; for p € Prec(a)
» a; D pi+1 for each p € Add(a)
» a; D -4 for each p € Del(a)
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Theory C(P,n) for Problem P = (F,0,I,G)

® Init: pg forpe I, =gy forqe F\ I
® Goal: p, forpe G
® Actions: Fori=0,1,...,n — 1, and each action a € O:

» a; D p; for p € Prec(a)
» a; D p;+1 for each p € Add(a)
> a; D —p;41 for each p € Del(a)
* Persistence: For i =0,...,n — 1, and each atom p € F, where O(p*) and O(p™)
stand for the actions that add and delete p, resp.:
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Theory C(P,n) for Problem P = (F,0,I,G)

® Init: pg forpe I, =gy forqe F\ I
® Goal: p, forpe G
® Actions: Fori=0,1,...,n — 1, and each action a € O:

» a; D p; for p € Prec(a)
» a; D p;+1 for each p € Add(a)
> a; D —p;41 for each p € Del(a)

* Persistence: For i =0,...,n — 1, and each atom p € F, where O(p*) and O(p™)
stand for the actions that add and delete p, resp.:

> pi A Nacop-) % O Pit1
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Theory C(P,n) for Problem P = (F,0,I,G)

® Init: pg forpe I, =gy forqe F\ I
® Goal: p, forpe G
® Actions: Fori=0,1,...,n — 1, and each action a € O:

» a; D p; for p € Prec(a)
» a; D p;+1 for each p € Add(a)
> a; D —p;41 for each p € Del(a)
* Persistence: For i =0,...,n — 1, and each atom p € F, where O(p*) and O(p™)
stand for the actions that add and delete p, resp.:
> pi A Nacop-) % O Pit1
> p; A /\an(er) —a; O TPi+1

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 178/248



Theory C(P,n) for Problem P = (F,0,I,G)

® Init: pg forpe I, =gy forqe F\ I
® Goal: p, forpe G
® Actions: Fori=0,1,...,n — 1, and each action a € O:

» a; D p; for p € Prec(a)
» a; D p;+1 for each p € Add(a)
> a; D —p;41 for each p € Del(a)
* Persistence: For i =0,...,n — 1, and each atom p € F, where O(p*) and O(p™)
stand for the actions that add and delete p, resp.:
> pi A Nacop-) % O Pit1
> p; A /\an(er) —a; O TPi+1

Seriality: For eachi=0,...,n—1, if a # d, =(a; A a})
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Theory C(P,n) for Problem P = (F,0,I,G)

® Init: pg forpe I, =gy forqe F\ I
® Goal: p, forpe G
® Actions: Fori=0,1,...,n — 1, and each action a € O:

» a; D p; for p € Prec(a)
» a; D p;+1 for each p € Add(a)
> a; D —p;41 for each p € Del(a)
* Persistence: For i =0,...,n — 1, and each atom p € F, where O(p*) and O(p™)
stand for the actions that add and delete p, resp.:
> pi A Nacop-) % O Pit1
> p; A /\an(er) —a; O TPi+1

Seriality: For eachi=0,...,n—1, if a # d, =(a; A a})
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Theory C(P,n) for Problem P = (F,0,I,G)

® Init: pg forpe I, =gy forqe F\ I
® Goal: p, forpe G
® Actions: Fori=0,1,...,n — 1, and each action a € O:

» a; D p; for p € Prec(a)
» a; D p;+1 for each p € Add(a)
> a; D —p;41 for each p € Del(a)

* Persistence: For i =0,...,n — 1, and each atom p € F, where O(p*) and O(p™)
stand for the actions that add and delete p, resp.:
> pi A Nacop-) % O Pit1
> —pi A /\an(er) O P41

Seriality: For eachi=0,...,n—1, if a # d, =(a; A a})

/& If theory C(P,n) is SAT: plan can be recovered from the truth assignment to atoms a;.
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Theory C(P,n) for Problem P = (F,0,I,G)

® Init: pg forpe I, =gy forqe F\ I
® Goal: p, forpe G
® Actions: Fori=0,1,...,n — 1, and each action a € O:

» a; D p; for p € Prec(a)
» a; D p;+1 for each p € Add(a)
> a; D —p;41 for each p € Del(a)

* Persistence: For i =0,...,n — 1, and each atom p € F, where O(p*) and O(p™)
stand for the actions that add and delete p, resp.:
> pi A Nacop-) % O Pit1
> —pi A /\an(er) O P41

Seriality: For eachi=0,...,n—1, if a # d, =(a; A a})

/& If theory C(P,n) is SAT: plan can be recovered from the truth assignment to atoms a;.

This encoding is simple but not best computationally; optimized encodings use parallelism
(no seriality), NO-OPs, lower bounds, ...
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From SAT to Answer Set Programming (ASP)

e ASP is a logic programming paradigm for knowledge representation and reasoning.

> More convenient representation than SAT: predicate logic (i.g., variables!)
> Based on stable model semantics for logic programs with negation as failure.
> Related to Constraint Programming and CSP.

® ASP encodings for planning similar to SAT encodings, but use rules instead of clauses:

{do(A, T) : action(A)} = 1 :- step(T). % exactly one action per step
:- do(A, T), prec(A, P), not holds(P, T-1). % precondition applies!

holds (P, 0) :- init(P). % define init state
holds(P, T) :- do(A, T-1), add(A, P). % add effects
holds(F, T) :- holds(F, T-1), step(T), not do(A, T-1) : del(A, F). 7 frame

:- goal(p), not holds(p, k). 7% goal at last step k

Problem instance encoded via facts action(A), prec(4,P), add(A,P), del(A,P), init(P),
goal(P), and step(T) — e.g., prec(unstack(A,B), on(A,B)).

® ASP solvers compute stable models (answer sets) that represent plans.
» Plans extracted from atoms of the form do (A, T) in the stable model.
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Blocks Worlds in ASP
Planner is a fixed ASP program:

{do(A, T) : action(A)} = 1 :- step(T). % exactly one action per step
:- do(A, T), prec(A, P), not holds(P, T-1). % precondition applies!

holds (P, 0) :- init(P). % define init state
holds(P, T) :- do(A, T-1), add(A, P). % add effects
holds(F, T) :- holds(F, T-1), step(T), not do(A, T-1) : del(A, F). 7 frame

:- goal(p), not holds(p, k). 7% goal at last step k

Problem instance encoding:

block(a;b;c;d).
init(on(a,b)). init(on(b,c)). init(ontable(c)). init(ontable(d)).
goal(on(a,d)). goal(on(d,b)). goal(on(b,c)).

action(stack(X,Y)) :- block(X), block(Y), X != Y.

prec(stack(X,Y), clear(Y)) :- block(X), block(Y), X != Y.
prec(stack(X,Y), holding(X)) :- block(X), block(Y), X != Y.
add(stack(X,Y), on(X,Y)) :- block(X), block(Y), X != Y.
del(stack(X,Y), holding(X);clear(X)) :- block(X), block(Y), X != Y.
step(1..10).
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ASP for Planning youtube tutorial

- anning
|r_'-|'|'|

set of fluents

initial and goal state

set of actions, | isting of pre- and | -onditions

number k of allowed actions

Find a plan, that is. a sequence of k actions leading

m length
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S. Sardifia, Al Classical and

Plasp: Tools for planning in ASP using Clingo

[0 README &% MIT license &

plasp e=z=zm Build Status Build Status

] ASP planning tools for PDDL

Overview

plasp is a tool collection for planning in gnswer set programming. piasp 3 supports the input languages
PDDL 3.1 {except for advanced features such as durative actions, numerical fluents, and preferences) and SAS
(full support of SAS 3), which Is used by Fast Downward.

The most notable tool provided by plasp is plasp translate , which translates PDDL descriptions to ASP
facts.

Translating PDDL to ASP Facts

PDDL instances are translated to ASP facts as follows:

plasp translate domain.pddl problem.pddl (5
Alternatively, PDDL instances may first be translated to SAS, the output format of Fast Downward.

. /fast-downward.py --translate --build=release84 domain.pddl problem.pddl fi=)
This creates a file called output.sas , which may now be translated by plasp as well,

plasp translate output.sas (=]

Solving the Translated Instance

The translated instance can finally be solved with clingo and a meta encoding, for instance, seguential-

detehFFﬁTzr?Fs‘t?‘i::Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

182/248
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S. Sardifia, Al

Lots of planners in IPC 2023

nal Planning Competition 2023 Classical Tracks

C)

PDDL Fragment
International Planning 1PC 2023 will ise & subset of PDDL 31, as dore since IPC 200, Planners mist support the subset of the
&xﬁitwgﬁz} language imvolving STRIPS. action costs. negative precanditions, and conditional effects (possibly in

combination with forall, as in IPC 201 and 2018). We will also consider including domains with disjunciive
preconditons and existentlal guantifiers. in which case we provide an automatic transiation complling these
features awy. and we run ol planners on both vasiants and select the best result per domain

Results

Ciptimad Track

Satisficing Track

Agile Track Mesit planners. in previous [PCs rely on a graunding pracedure to instantiate the entire planning task priar to
slart sobving L. In IPC 2023, we will {allow in the steps of the previous IPC by including domains and
prablems that are hard to ground

Domairys.
1PC 2023 Dataset
Using |PC 2023 planners

Participants
Calis

Preliminary Schedule Optimal Track

Tracks SymBD (planner abatra

Optimal Track Alvaro Torrafbo

Saabicing Track Symbofic Bidirectonal Blind Seanch

#gie Track Haposi MiPlan Optimal All Data (planrer absioact) (eode)
PODL Fragment Patrick Farber, Michae! Kats. fendrik Ssipg, Silvan Sievers. Daniel Borrajs, lobel Cenamor. Tamas de
Participants la Raso. Fernando Fernandes-Rebollo, Garlos Linares, Sergio Nunss, Alberto Pacance, Horst

Optimal Track Samnulowitz, Shirin Sohrabi
Sequential pofolio of optimal IPC planners computed with the MIP formilation by Nunez. Borrajo
and Linares (2015).

Satisficing Track

Agile Track

Registration
Planner Submission | Powl (L. fendrnk Seipp. David Speck. Siman Stéhiberg
Apptainer mages Sequential porifolio of optimal planners developed a1 Linkaping University

onomous Behavior, , July 28 -August 1, ECI25
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Part IV

Non-deterministic Planning
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Part 4. Non-deterministic Planning

Non-deterministic Planning
Solution Concepts for FOND Planning

Solving FOND Planning
m FOND Planning using Classical Planners
m FOND Planning via SAT
m Compact Policies via ASP/SAT

Conditional Fairness
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Part 4. Non-deterministic Planning

Non-deterministic Planning
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Planning Models: Vanilla Model for Classical Al Planning

e finite and discrete state space S
® 3 known initial state s € S
® aset Sg C S of goal states
* actions A(s) C A applicable in each s € S
* a deterministic transition function s’ = f(a, s) for a € A(s)
® positive action costs c(a, s)
A solution/plan is seq. of applicable actions © = ay, . .., a, that maps sy into Sg.

Plan is optimal if it minimizes the sum of action costs.

i) Different models obtained by relaxing assumptions in bold.
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Planning with non-deterministic actions

What if an action may yield different effect outcomes?

¢ Slipery floor: you may slip and fall (and maybe hurt yourself).

e Slipery blocksworld:
if you stack or unstack a block, it may fall down to the table.

® Dice rolling: if you roll a die, it may yield different outcomes:
1,2,3,4,5 or 6.

® Robot operation: when using the gripper, it may succeed or
fail to pick an object (and may need to retry).
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Planning with non-deterministic actions

What if an action may yield different effect outcomes?

Slipery floor: you may slip and fall (and maybe hurt yourself).

Slipery blocksworld:
if you stack or unstack a block, it may fall down to the table.

Dice rolling: if you roll a die, it may yield different outcomes:
1,2,3,4,5 or 6.

Robot operation: when using the gripper, it may succeed or
fail to pick an object (and may need to retry).

Finding parking: when visiting a block you may or may not find parking space (if not,
keep going around the block).

Walking on beam: if you do a step on a beam, you may advance or fall down.

Walking on corridor: if you do a step you may or may not be at the end of the corridor.
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Example: Harbor Management FOND Problem

Very simple harbor management domain:
transit3
Unload a single item from a ship.
Park the item in a storage facility.

Deliver it to gates (to be loaded into
$
tracks). ’. -

parking2

back

on_ship at_harbor

S , gl . gate2

transitl

Storage and gates may be unavailable, o
but we can always wait and move ) ) ) .
. (Example 11.1 in Acting, Planning, and Learning
containers around.
Ghallab, Nau, Traverso 2025)
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Planning with Markov Decision Processes

Goal MDPs are fully observable, probabilistic state models:

a state space S

initial state sp € S

aset G C S of goal states

actions A(s) C A applicable in each state s € S

transition probabilities P, (s’ | s) for s € S and a € A(s) <
action costs c(a,s) >0

REoBENE

® Solutions are functions (called “policies”) mapping states into actions; 7 : S — A
» 7(s) states what action to do in state s

e Optimal solutions minimize expected cost to goal.

* Reward-based MDPs involve rewards instead of costs, and discount factor -y € [0,1)
in place of goals. They underlie theory of RL. (&
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FOND Planning: Fully-observable Non-Deterministic Planning

A FOND state model is like the “logical” counterpart of Goal MDPs:

a state space S

initial state sp € S

aset G C S of goal states

actions A(s) C A applicable in each state s € §

non-det state transition function F': successors s’ € F(a,s), s€ S, a € A(s) O
action costs c(a, s) =1

REoBENE

* Main change from Classical Planning: F(a, s) maps to set of possible states (not to
one unique state).
» Nature decides what next state is reached after action a is applied in state s —
non-determinism.

» ... but agent will observe the state reached after a is applied.
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FOND Planning: Fully-observable Non-Deterministic Planning

A FOND state model is like the “logical” counterpart of Goal MDPs:

a state space S

initial state sp € S

aset G C S of goal states

actions A(s) C A applicable in each state s € §

non-det state transition function F': successors s’ € F(a,s), s€ S, a € A(s) O
action costs c(a, s) =1

REoBENE

* Main change from Classical Planning: F(a, s) maps to set of possible states (not to
one unique state).
» Nature decides what next state is reached after action a is applied in state s —
non-determinism.

» ... but agent will observe the state reached after a is applied.

* Main change from MDPs: possible transitions s € F'(a, s) not weighted by probabilities.
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Fully Observable Non-Deterministic Planning (FOND)

Initial State
L Plannin
Non-deterministic &
System Plan?
Operators
(Solver)
Goal State
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Fully Observable Non-Deterministic Planning (FOND)

achieves goal

Initial State from initial state
- using operators
N Planning
Non-deterministic
System Plan?
Operators
(Solver)
Goal State
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Fully Observable Non-Deterministic Planning (FOND)

set of possible | |nitial State
effects

Operators

Goal State

Planning

System
(Solver)

achieves goal
from initial state

using operators

Plan?
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Example: Does it have a solution?

® |s it possible to always deliver the transit3
containers to the gates?

move

® If so, what is the sequence of
actions?

arking2
LU 4 deliver,

on_ship

S gl . gate2

transitl

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Does it have a solution?

® |s it possible to always deliver the transit3
containers to the gates? ?

move

® If so, what is the sequence of
actions?

on_ship
S

transitl

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Does it have a solution?

® |s it possible to always deliver the transit3
containers to the gates? ?

® If so, what is the sequence of
actions? X

Need to know what to do in each state!

on_ship

S gl . gate2

transitl

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Does it have a solution?

transit3

® |s it possible to always deliver the
containers to the gates? ?

® If so, what is the sequence of

actions? X

Need to know what to do in each state!

on_ship
S

Policy

A policy 7 is a partial function from
states s into actions a; thatis, 7 : S — A.

transitl
(when undefined, agent stops acting) transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Does it have a solution?

® |s it possible to always deliver the
containers to the gates? ?

® If so, what is the sequence of

actions? X

Need to know what to do in each state!

Policy

A policy 7 is a partial function from

states s into actions a; thatis, 7 : S — A.

(when undefined, agent stops acting)

=) |s there a “good” policy 77?

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25

transit3

back  parking2

deliver,

on_ship

S gl . gate2

transitl

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Does 7 solve the task?

Policy

S m1($)

on_ship | unload
at_harbor | park

parkingl | deliver

parking2 back

transitl move
transit2 move
transit3 move

transit3

on_ship

S gl . gate2

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Does 7 solve the task?

Policy

S m1($)

on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back

transitl move
transit2 move
transit3 move

transit3

on_ship

S gl . gate2

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Policy X

Example: Does 7 solve the task?

S m1($)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transitl move
transit2 move
transit3 move

transit3

on_ship
S

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What about 757

transit3

POIicy Uy move
S 2 (8) . gatel

on_ship | unload

at_harbor | park
parkingl | deliver B
parking2 | deliver s gate2
transitl move
transit2 move
transit3 move
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Example: What about 757

transit3

Policy 7o

S ma($)

on_ship | unload
at_harbor | park

parkingl | deliver

on_ship

parking2 | deliver s ()] gate2
transitl move

transit2 move

transit3 move

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: Which one is better?

Policy 9
S 7(s)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transitl move
transit2 move
transit3 move
Policy 74
S 7(s)
on_ship | unload
at_harbor | park

on_ship
S

transit3

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Policy 9

Example: Which one is better?

S 7(s)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transitl move
transit2 move
transit3 move

Policy 74 X

S 7(s)
on_ship | unload
at_harbor | park

on_ship
S

transit3

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example:

Policy

S ma($)
on_ship | unload

at_harbor | park
parkingl | deliver
parking2 | deliver

transit2 move

transit3 move

What if transitl is a dead-end?

transit3

parking2

back

on_ship

N
s . gate2

at_harbor

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What if transitl is a dead-end?

transit3
Policy X
back  parking2 moye
S ma(s)
on_ship | unload () gate1

at_harbor | park
parkingl | deliver

) ) on_ship at_harbor =\
park|n.g2 deliver S . gate2
transit2 move
transit3 move

transitl

Do)

But could 7 succeed (sometimes)? =

transit2

(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What if parking2 is not connected to gates?

Policy m,

S m1(8)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transit2 move
transit3 move
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transit3

back  parking2

on_ship
S

at_harbor

transitl
transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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Example: What if parking2 is not connected to gates?

Policy m, X

S m1(8)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transit2 move
transit3 move

Storage parkingl may never be available!
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S
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Example: What if parking2 is not connected to gates?

transit3
Policy m, X

S m1(8)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transit2 | move A

S )
0 . gate2
transit3 move

back  parking2

at_harbor

Storage parkingl may never be available!

transitl

But, what if we know parkingl would
eventually becomes available? =

transit2
(Example 11.1 in Acting, Planning, and Learning
Ghallab, Nau, Traverso 2025)
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So, some lessons...

e (lassical plans as sequences of actions are not
enough to solve FOND problems.

® \We need to use a policy that maps states into transits
actions.

» More like “programs” with conditionals and loops!

parking2

back

® Some (bad) policies are better than others.

unload

at_harbor

® Some policies may achieve the goal, but not 2
always. ’

® Some policies will achieve the goal if environment .
is not too adversarial — not unfair. tranit
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So, some lessons...

e (lassical plans as sequences of actions are not
enough to solve FOND problems.

® \We need to use a policy that maps states into transits
actions.

» More like “programs” with conditionals and loops!

parking2

back

® Some (bad) policies are better than others.

unload

at_harbor

® Some policies may achieve the goal, but not 2
always. ’

® Some policies will achieve the goal if environment B
is not too adversarial — not unfair. tranit

This seems way more complex planning! &
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Planning is hard!
R

ELEMENTARY Non-deterministic planning )

2EXPTIME
EXPSPACE

Classical
Planning

Classical

o NP-C Planning
(poly-plans)
RN
N %,
\ @
NN S
NN
A

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 199/248



Kinds of Solution Policies

il acyclic ,
<afe policies ~a~
. policies li
solution | ;}(Z);:i(]:(i:es Qc_. Goal States

policies

unsafe <i
policies ¢

Acting, Planning, and Learning Ghallab, Nau, Traverso 2025
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Part 4. Non-deterministic Planning

Non-deterministic Planning
Solution Concepts for FOND Planning

Solving FOND Planning
m FOND Planning using Classical Planners
m FOND Planning via SAT
m Compact Policies via ASP/SAT

Conditional Fairness
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Part 4. Non-deterministic Planning

Solution Concepts for FOND Planning
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FOND Planning: Solution Concepts

Running policy 7 from state s yields trajectories runs:

* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].
* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)
FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
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FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.
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> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
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Running policy 7 from state s yields trajectories runs:

* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].
* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)
FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.

> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)
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* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].

* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)

FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.

> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)

7 is strong cyclic solution if for each state s reachable from sy with a m-trajectory,
there is a m-trajectory from s to goal.
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> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.

> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)
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» Goal will be achieved if environment is not “adversarial”
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FOND Planning: Solution Concepts

Running policy 7 from state s yields trajectories runs:
* 7-trajectories s, ..., sy, such that s;11 € F(a;, s;), a; = 7(s;), for i € [0,n — 1].

* m-trajectory maximal if 1) s, is goal state, 2) 7(s,) = L, or 3) n = oo (7 is infinite)

FOND Planning Solution Concepts

7 is a weak solution if there is a 7-trajectory from sy that reaches goal.
> At least one execution of the plan reaches the goal.

7 is strong solution if all max 7-trajectories from s reach the goal.
> All executions are guaranteed to reach the goal (in a known bounded number of actions!).
» Plans may have conditionals (but no loops!)

7 is strong cyclic solution if for each state s reachable from sy with a m-trajectory,
there is a m-trajectory from s to goal.

» Always a possibility to reach the goal.
» Goal will be achieved if environment is not “adversarial”
> Plans may have conditionals & loops!
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Weak Plans

transit3

S ™ (S) back  parking2 A s
on_ship | unload <
at_harbor | park O\ gatet

parkingl | deliver
parking?2 back

on_ship at_harbor
transit2 move s gt O/ eate
transit3 move
transitl
v/ Policy 7 is a weak plan as there is a trajectory that reaches the goal. w2

» {on_ship}, {at_harbor}, {parkingl}, {gatel}

® But 7 is not a strong plan.
» {on_ship}, {at_harbor}, {parking2}, {at_harbor}, {parking2}, {at_harbor}, ...
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What about strong cyclic?

S 1($)

on_ship | unload
at__harbor | park
parkingl | deliver
parking2 back

transitl move
transit2 move
transit3 move

transit3

parking2 1

back
del .
eliver

unload

on_ship at_harbor

s i () eate2

transitl

transit2

Policy 7 is strong cyclic solution if for each state s reachable from sy with a 7-trajectory,

there is a m-trajectory from s to goal.
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What about strong cyclic?

transit3

S 1($)

on_ship | unload
at__harbor | park

parkingl | deliver
parking2 back

parking2 1

back
del .
eliver

unload

. on_ship at_harbor

trans!tl move : ; ®/::-
transit?2 move

transit3 move

transitl

transit2

Policy 7 is strong cyclic solution if for each state s reachable from sy with a 7-trajectory,
there is a m-trajectory from s to goal.

* Yes!, policy never “loses” the possibility to get the goal /&
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What about strong cyclic?

transit3

S 1($)

on_ship | unload
at__harbor | park

parkingl | deliver
parking2 back

parking2 1

back
del .
eliver

unload

. on_ship at_harbor

trans!tl move : ; ®/::-
transit?2 move

transit3 move

transitl

transit2

Policy 7 is strong cyclic solution if for each state s reachable from sy with a 7-trajectory,
there is a m-trajectory from s to goal.

* Yes!, policy never “loses” the possibility to get the goal /&
® But, it may loop “forever” in some states.
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What about strong cyclic?

transit3

S 1($)

on_ship | unload
at__harbor | park

parkingl | deliver
parking2 back

parking2 deliver
— )

back

unload

. on_ship at_harbor

trans!tl move : ; ®/::-
transit?2 move

transit3 move

transitl

transit2

Policy 7 is strong cyclic solution if for each state s reachable from sy with a 7-trajectory,
there is a m-trajectory from s to goal.

* Yes!, policy never “loses” the possibility to get the goal /&
® But, it may loop “forever” in some states.
® We can make 7 strong by changing it to 7 (parking2) = deliver.
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Strong cyclic policies: when do they work?

© Is there a strong plan?

transit3

move
parking2

back

unload

on_ship at_harbor

=
s i . gate2

transitl

transit2
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Strong cyclic policies: when do they work?

© Is there a strong plan? No!

transit3

move
parking2

back

unload

on_ship at_harbor

=
s i . gate2

transitl

transit2
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Strong cyclic policies: when do they work?

© Is there a strong plan? No!

Best we can do is: transit3
S 7r1(s)
On_ship unload back  parking2 sk
at_harbor | park 3
. gatel

parkingl | deliver
parking2 back

transitl move onehip
transit2 move 8 i O/ eate2
transit3 move

unload

at_harbor

transitl

© When will this policy reach the goal?

transit2
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Strong cyclic policies:

© Is there a strong plan? No!
Best we can do is:

S 7T1(8)
on_ship | unload
at_harbor | park
parkingl | deliver
parking2 back
transitl move
transit2 move
transit3 move

© When will this policy reach the goal?
When executed in “fair” environments!

Fairness Environments

when do they work?

transit3

parking2

back

unload

on_ship at_harbor

—
S gl . gate2

transitl

transit2

A trajectory o is an unfair execution of 7 if a state s appears infinitely often in ¢ but some
outcome state s’ € F(w(a), s) only appears a finite number of times in o.
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Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

Fairness Environments
A trajectory o is an unfair execution of 7 if a state s appears infinitely often in ¢ but some
outcome state s’ € F'(w(a), s) only appears a finite number of times in o.
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Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

© What type of environments?

Fairness Environments
A trajectory o is an unfair execution of 7 if a state s appears infinitely often in ¢ but some
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Non-determinism behavior under fairness assumption

A strong cyclic policy eventually reaches the
goal in every fair trajectory.

RY UNTIL SUCCESS

© What type of environments?
® Where each effect listed has indeed
non-zero probability.

¢ Re-trying is an effective strategy.
> rolling a die until it shows a 6.
» driving around the block until a parking
space is available.
» pour into cup until full.

Fairness Environments
A trajectory o is an unfair execution of 7 if a state s appears infinitely often in ¢ but some

outcome state s’ € F'(w(a), s) only appears a finite number of times in o.
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Recap: Solution plans for FOND planning

e Classical sequential plans are not enough to solve FOND problems.
» We need more flexible behavior description (controlller) for agents

® We use policies mapping states into actions.
» Allow conditional and loops.
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» We need more flexible behavior description (controlller) for agents

We use policies mapping states into actions.
» Allow conditional and loops.

Weak plans may get the goal if we are lucky — not really adequate.

Strong plans are very demanding: they require that all possible executions of the plan
reach the goal. Often there is no strong plan! &
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Recap: Solution plans for FOND planning

e (Classical sequential plans are not enough to solve FOND problems.
» We need more flexible behavior description (controlller) for agents

® We use policies mapping states into actions.
» Allow conditional and loops.

® Weak plans may get the goal if we are lucky — not really adequate.

e Strong plans are very demanding: they require that all possible executions of the plan
reach the goal. Often there is no strong plan! &

e Strong-cyclic plans are more flexible: they allow loops and conditionals, and they
guarantee that the goal will be reached if the environment is fair.

® Many environments are fair: retrying is an effective strategy. (s,
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Recap: Solution plans for FOND planning

Classical sequential plans are not enough to solve FOND problems.
> We need more flexible behavior description (controlller) for agents

We use policies mapping states into actions.
» Allow conditional and loops.

Weak plans may get the goal if we are lucky — not really adequate.

Strong plans are very demanding: they require that all possible executions of the plan
reach the goal. Often there is no strong plan! &

Strong-cyclic plans are more flexible: they allow loops and conditionals, and they
guarantee that the goal will be reached if the environment is fair.

Many environments are fair: retrying is an effective strategy. (o

How can we compute these plans with loops? How to compute strong-cyclic plans policies?
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Part 4. Non-deterministic Planning

Non-deterministic Planning
Solution Concepts for FOND Planning

Solving FOND Planning
m FOND Planning using Classical Planners
m FOND Planning via SAT
m Compact Policies via ASP/SAT

Conditional Fairness
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Non-determinism in PDDL

® Non-deterministic effects added to PDDL
for the 5th IPC in 2006.

® Action effect can have a one-of effect:
(oneof el e2 ... en)

® To support uncertainty track in IPC-5.

(:action unstack
:parameters (?bl ?b2 - block)

:precondition (and (not (= ?bl ?b2)) (emptyhand) (clear ?bl) (on

:effect (oneof

(and (holding ?bl) (clear ?b2) (not (emptyhand)) (not (clear ?bl)) (not (on ?bl ?b2)))

5th International Planning Competition: Non-deterministic Track
Call For Participation

systems for conformant, non-deterministic

and probabili ' planing under iftcrent crteria. This doc.
al planning

o vepecacatititn Wngisge ed) 1

Introduction
‘The Sth International Planning Competition (IPC-5) will be
colocated with the 16th International Conference on Auto-
mated Planning and Scheduling. ICAPS-06, to be held in
‘The English Lake District, UK. during June 6-10, 2006. The
IPC is a biannual event where planning systems are evalu-

Robert
Electrical & Cor

ue University
West Lafayette, IN 47907
givan@ecn.purdue.edu

non-deterministic confor-
mant planning, non-deter nal
planning with full observability), and pro lanning
(i conditional probabilistic planning With full obiervabil
ity).

As done in the classical track of IPC, we mnm that plan-
ners that offer different guara ality of their so-
lutions should be -

tracks that will cover the

2 gives a brief background on the different planning tasks
included in the competition as well as the form of the solu-
nsions and restrictions upon

ct. 4 focuses on the
winly how different

(and (clear ?7b2) (on-table ?bl) (not (on ?bl 7b2)))))

;; second effect: fail to grab;
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https://ipc06.icaps-conference.org/probabilistic/docs/cf-ipc-prob.pdf

Non-determinism in PDDL

® Non-deterministic effects added to PDDL
for the 5th IPC in 2006.

® Action effect can have a one-of effect:
(oneof el e2 ... en)

e To support uncertainty track in IPC-5.

(:action pick-up-from-table
:parameters (?b - block)

5th International Planning Competition: Non-deterministic Track
Call For Participation

Blai Bonet
Departamento de Computacin
Universidad i

Abstract

“The Sth International Planning Competition will be colocated
with ICAPS-06. This IPC edition will contain a track on non-
deterministic and probabilistic planning as the continuation
of the probbilistic track at IPC-d. The non-deterministic
track will evaluate systems for conformant, non-determinstic:
and probabilistic planning under differen criteria. This doc-
ument describes the general goals of the track, the planning
tasks 0 be addressed., the representation language and the
evaluation methodology

Introduction

‘The 5th International Planning Competition (IPC-5) will be
colocated with the

IPC is a biannual event where planning systems are evalu-

Robert Givan
Electrical & Computer Engineering
irdue University
‘West Lafayette, IN 47907
givan@ecn.purdue.edu

tracks that will cover the areas of non-deterministic confor-
mant planning, non-deterministic planning (i.c. conditional
planning with full observability), and probabilistic planning
(i.c. conditional probabilistic planning with full observabil-

parisons are not meaningful. Hence
group will be further categorized by the guarantees they pro-
vide, as much as possible given the number of participants.
‘The rest of this document is organized as follows. Sect
2 give different planning tasks
included in the competition as well as the form of the solu-
tions. S nts the extensions and restrictions upon
the PPDDL language to be used. Sect. 4 focuses on the
evaluation aspects of the competition, mainly how different

:precondition (and (emptyhand) (clear ?b) (on-table 7b))

:effect (oneof

(and) ;; no effect - things stay the same!
(and (holding ?b) (not (emptyhand)) (not (on-table ?b)))))
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Al-Planning/fond-domains @ GH: Benchmark for FOND

(7] fond-domains (2w - | ([ewn @ - (Y@ [ - | [ se@® [ -]
P 18ranch © 0Tags [ Q Gotofile @][ Add file - _ About
Flat collection of all FOND domains in
@hn ge pi i - 94c6801 /10 months ago ) 31 Commits circulation.
| venchmarks. process tidyup-mdp #4 10monthsago | OO Readme
A Activiy
D .gitignore Initial commit of all the benchmarks. last year
[ Custom properties
[ README.md move FIP to non-aneof section #3 10 months ago fr Gstars
® 4watching
(I} README r Y dforks
Réport repository
FOND Benchmarks Releases

Mo releases published
Flat collection of all FOND domains in circulation, Notes are our (Christian Muise & Sebastian Sardina) best
guesses &5

Packages
These are planning domains that include the oneor effect to model non-deterministic actions (without
probabilities). The oneof construct was proposed as part of NPDDL (which starts from level 2 of PDDL 2.1)in
the following 2003 workshop paper:

o packages published

Contributors (2)

» Extending PDDL to nondeterminism, limited sensing and iterative conditional plans, Piergiorgio Bertoli,

Alessandro Cimatti, Ugo Dal Lago, Marco Pistare, International Warkshop on PDDL @ ICAPS 2003, pp e ssardina Sebastian Sardina
i [ p—
Planning under non-deterministic oneof actions was then first used in the 2006 IPC-5 as an addition ot the
p (now and track):
Languages
« 5th Planning Competition: N Track Call For Participation, Blai Bonet and
Robert Givan, IPC-5 @ ICAPS 2006. ® PODL100.0%

Notable Changes

» added empty :paraseters block 1o some actions:
Tinish actionin faults, faults-new,and st_faults

https://github.com/AI-Planning/fond-domains
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Al-Planning/fond-utils @ GH: Utilities for FOND

Wity L Insights @ Settings

() fond-utils (usic) (s - ) (owen @) (Y ra@ [ ) (¥ sw® [ -)

Utities for parsing + processing FOND

(@ haz Merge pullrequest #23 fom Abslanningisas-vaidation osstet-2manchsigo OCommS | gomains.
B githubiworkfions Create python-publishymi smonthsago | [ Readme
& MTlcense
 fondutis Merge pull request #22 from Al-lanning/saswalidation 2 months ago
® Codeof conduct
- tests Merge branch mai' into sasvalidation 2monthsago | . Activity
[ giignore improve handiing o versioning #20 421 3monthsago | E Customproperties
o 4srs
[ CODE.OF CONDUCTmd Minor wording update in CoC. 1imonthsago | & 2ustching
D ucense Minor docssdates. lastyear | ¥ 2forks
[ ReADMEMA update readme: remove dummy import in example s months ago
D pyprojectiomi Update pyprojecttom! Smonthsago | Releases (7)
O requirements.xt remove dummy new line Tmonthsago | © w45
anbtays
+orel
01 README @ Codeofconduct &% MITlicense 7 = felaper
Packages

FOND Utilities Wopitages publibed

pubsh your frs package

Utites for parsing and the FOND
oneot effects). At this point the system can: Contributors )
« Normaize a . have asingle top- clause in the effect). @) rmcrsmse
e - : i
ol asetof possi the action. A R ——
solution in i ts te k i jinal FOND problem. Deployments (7)
her PDDL domain and does not deal P itself,
i ; © pypi2 months ago
d in other PRP, FONDSAT, or CFOND-ASP) that
are are based on p producea
g problem. For i
encodings, please refer planners or the P Languages
© Important —_—
o POoLs2ze e pythonaion
The syst arean y nesting of oneof , 5,and and . See o ssson

https://github.com/AI-Planning/fond-utils
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FOND Planning using Classical Planners

One of the most effective ways to solve FOND planning problems is to use classical
planners! Weird...?
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FOND Planning using Classical Planners

{74 One of the most effective ways to solve FOND planning problems is to use classical
planners! Weird...?

They all use a deterministic relaxation of the FOND problem:

All-outcome determinization

Deterministic relaxation Pp of FOND P obtained by substituing non-det actions a with
effects {e1,...,e,} by deterministic actions a',...,a", where a''s effect is e;, for i € [1,n].

® Ppis a deterministic classical planning problem.
® Under reasonable assumptions, Pp is polynomially larger than P.
® There are tools to do the determinization:

https://github.com/AI-Planning/fond-utils
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Week and Online Solutions for FOND Planning

¥# Weak (open loop) solution for P

From any classical plan p for Pp:

® If p generates trajectory sg,...,sy in Pp, set 7(s;) = a if p; € a.
® Run 7 and hope for the best! !
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Week and Online Solutions for FOND Planning

¥# Weak (open loop) solution for P

From any classical plan p for Pp:

® If p generates trajectory sg,...,sy in Pp, set 7(s;) = a if p; € a.
® Run 7 and hope for the best!

¥#* Online (closed loop) solution method for P

Reach goal by interacting with FOND “system” that returns observation s’ € F(a, s):
From current state s, initially sg, compute plan p = p1,..., pn for Pp[s].

Execute prefix a1, ..., a; for p; € a; until state s; observed is goal or different than
state s, predicted in Pp.

If s; is goal, exit; else set s := s; and go back to 1
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Week and Online Solutions for FOND Planning

¥# Weak (open loop) solution for P

From any classical plan p for Pp:

* If p generates trajectory sq,...,Sny in Pp, set w(s;) = a if p; € a.
® Run 7 and hope for the best!

¥#* Online (closed loop) solution method for P

Reach goal by interacting with FOND “system” that returns observation s’ € F(a, s):
From current state s, initially sg, compute plan p = p1,..., pn for Pp[s].

Execute prefix a1, ..., a; for p; € a; until state s; observed is goal or different than
state s, predicted in Pp.

If s; is goal, exit; else set s := s; and go back to 1

Properties: If no dead-end states reachable in P, under mild assumptions, goal state
eventually reached. Else, method is incomplete.
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PRP: Strong Cyclic Policies using Classical Planners

More powerful off-line method, can compute strong cyclic policies:

£+ PRP: Planning for Relevant Policies (Muise, Mclliraith, Beck ICAPS'12)

Run simulated on-line method not just from sy but from every possible sucessor s’ of a
(simulated) observed state s; i.e., s’ € F(a,s) for a executed in s.

If state s’ € F(a, s) is reached from which no classical plan for Pp(s); remove a from
A(s), and start all over again.

Keep policy to 7(s) = a where deterministic version a; is head of shortest classical
prefix found from s to goal.

Properties:
* Method is sound and complete: returns strong cyclic policy if one exists. /&
® More scalable than other methods as it uses classical planners.
e Can be made more efficient by generalizing plans using regression.
e Struggles if there are many “risky” nondeterminism leading to dead-ends.

w

. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 214/248



Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.

So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.
» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

So, we can set our FOND policy to m(s,—1) = an.
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Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.

So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.
» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

So, we can set our FOND policy to 7(s,_1) = ay,. Is that the best we can do? &
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Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.

So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.
» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

So, we can set our FOND policy to 7(s,_1) = ay,. Is that the best we can do? &

What about any other state s’ such that p,q € s'?
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Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.
So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.
» The last action of p has g € Add(a,,) — a,, achieves the goal.
The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

o)

So, we can set our FOND policy to m(s,—1) = a,. Is that the best we can do?

What about any other state s’ such that p,q € s’? Can we also set 7(s') = a,? =
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Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.
So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.

» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(ay) = {p, ¢}.
» Clearly, p,q € sp,—1 — ay's precondition hold just before the goal.

o)

So, we can set our FOND policy to m(s,—1) = a,. Is that the best we can do?

What about any other state s’ such that p,q € s’? Can we also set 7(s') = a,? =
YES! — {p, q} is the regression of goal w.r.t. action a,
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Regression to Generalize Policies

Consider the following situation:

Goal is G = {g}.
Classical plan p = ay, ..., a, optimally achieves G from state sy in Pp.
So, p yields trajectory sg, S1,...,S, in Pp such that g € s,.

» The last action of p has g € Add(a,,) — a,, achieves the goal.

The precondition of a,, is Pre(a,) = {p, q}.
» Clearly, p,q € sp,—1 —ay's precondition hold just before the goal.

3

So, we can set our FOND policy to m(s,—1) = a,. Is that the best we can do?

=

What about any other state s’ such that p,q € s'? Can we also set 7(s") = a,,?
YES! — {p, q} is the regression of goal w.r.t. action a,,

© Question

If Add(an—1) = {p} and Pre(a,,—1) = {w}, what states s’ can we set 7(s') = a,,—17?
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PRP Rebooted: AAAI'24

PRP Rebooted: Advancing the State of the Art in
FOND Planning
e e

@ PRP Rebooted: Advancing State-of-the-Art in Fond Planning

@ imin

PRP Rebo&%d

Advancing th te of the Art nmn  Planning

Abstract
Fully Observable Non-Deterministic (FOND) planning is a variant of classical symbolic planning in which actions are nondeterministic, with an

action’s outcome known only upen execution. It is a popular planning paradigm with applications ranging from robot planning to dialogue-agent

design and reactive synthesis. Over the last 20 years, a number of approaches to FOND planning have emerged. In this work, we establish a new

https://mulab.ai/project/pr2/
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Shortcomings of Classical Planners for FOND
PRP scales wellas it uses classical planners + regression. However:
e Codebase is highly sophisticated; thousands of lines.

® Uses a lot of tricks: regression, dead-end detection, regression, loop closing,
strong-cyclic check, etc.

Struggle from “risky nondeterminism”, where previous search choices need to be thrown
and restarted.

» non-deterministic actions whose other effects will eventually lead to dead-ends.

® May output very large policies — no guarantees of “compactness”.

Unable to handle mixed fairness environments.
» some actions are fair, others are unfair.

w
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Shortcomings of Classical Planners for FOND
PRP scales wellas it uses classical planners + regression. However:
e Codebase is highly sophisticated; thousands of lines.

® Uses a lot of tricks: regression, dead-end detection, regression, loop closing,
strong-cyclic check, etc.

Struggle from “risky nondeterminism”, where previous search choices need to be thrown
and restarted.

» non-deterministic actions whose other effects will eventually lead to dead-ends.

® May output very large policies — no guarantees of “compactness”.

Unable to handle mixed fairness environments.
» some actions are fair, others are unfair.

© What can we do about these issues? Can we get a simpler, declarative solver for FOND?
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wn

Recall Theory C'(P, n) for Classical Problem P = (F, A, I,G)

e Init: pg forpe I, ~qoforqe Fand g & I

® Goal: p, forpe G

® Actions: Fori=0,1,...,n— 1, and each action a € A
» a; D p; for p € Prec(a)
» a; D pi+1 for each p € Add(a)
» a; D —p;41 for each p € Del(a)

* Persistence: For i =0,...,n — 1, and each atom p € F, where O(p*) and O(p™)
stand for the actions that add and delete p resp.

» pi A Naco(p-)T0;i D Pit1

» i A Naco(pt) @i D TPit1

e Seriality: Foreach i =0,...,n—1,if a # d/, =(a; A a})
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Strong Cyclic Planning as SAT

¢ Key idea: label each state with action and distance to goal.

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior,
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Strong Cyclic Planning as SAT

v

> sa;: s; and w(s) = a

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior,

¢ Key idea: label each state with action and distance to goal.
* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
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Strong Cyclic Planning as SAT
¢ Key idea: label each state with action and distance to goal.

v

* Variables of SAT encoding (i is not time index!)
> s;: min “distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a

® Formulas C(M); here M = S(P) and max = |S| — 1:

Smaz TOr initial state sy ; max dist I to goal of length < max
sg for s € Sg and —sq for s & Sq

q

g9 N qag Tbs

x4 N xdy
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Strong Cyclic Planning as SAT
¢ Key idea: label each state with action and distance to goal.

v

* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and max = |S| — 1:
Smaz TOr initial state sy ; max dist I to goal of length < max

sg for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance

g9 N qag ¢ Tbs

9120 N 9¢120

x4 N xdy
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Strong Cyclic Planning as SAT

» Key idea: label each state with action and distance to goal.

* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢

> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and max = |S| — 1:
Smaz TOr initial state sy ; max dist I to goal of length < max

sg for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance .
A sa; OV s’ : some successor gets closer to goal
o t s'€f(as) Zi—1 & & 99 A qag t

9120 N 9¢120

x4 N xdy
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Strong Cyclic Planning as SAT

¢ Key idea: label each state with action and distance to goal.

* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and max = |S| — 1: s¢ A Sag
Smaz TOr initial state sy ; max dist I to goal of length < max a
sg for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance .
5a; D Vyef(a,s) Si_1 ; Some successor gets closer to goal
Si—1 D s; ; if distance < i —1, then <
sa;_1 D sa; ; if distance < i —1, then <3

g9 N qag Tbs

REoENE

x4 N xdy
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Strong Cyclic Planning as SAT

¢ Key idea: label each state with action and distance to goal.
* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and maz = |S| — 1:
Smaz TOr initial state sy ; max dist I to goal of length < max
sg for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance
5a; D Vyef(a,s) Si_1 ; Some successor gets closer to goal
Si—1 D s; ; if distance < i —1, then <
sa;_1 D sa; ; if distance < i —1, then <3
SUmaz D Sy 1 if T(s) = a, all s" € f(a,s), must reach goal
SUmaz D T8, 40t If T(8) = a, then 7(s) #d’, a # d.

ENpENENEA

g9 N qag ¢ Tbs

9120 N 9¢120

x4 N xdy
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Strong Cyclic Planning as SAT

¢ Key idea: label each state with action and distance to goal.
* Variables of SAT encoding (i is not time index!)
» s;: min "distance” from s to goal in policy is at most ¢
> sa;: s; and w(s) = a
® Formulas C(M); here M = S(P) and max = |S| — 1:
Smaz TOr initial state sy ; max dist I to goal of length < max
so for s € Sg and —sq for s & Sq
8i D VaecAa(s) Sa; ; choose action in s, preserve distance
5a; D Vyef(a,s) Si_1 ; Some successor gets closer to goal
Si—1 D s; ; if distance < i —1, then <
sa;_1 D sa; ; if distance < i —1, then <3 4120 A 4€120
SUmaz D Saw 3 1T T(8) = a, all 8 € f(a,s), must reach goal e
SUmaz D T8, 40t If T(8) = a, then 7(s) #d’, a # d. @4 A wdy

Model M has a strong-cyclic policy = iff C(M) is satisfiable.

g9 N qag t Tbs

ENpENENEA

If o satisfies C(M), 7(s) = a for Samqy true in o is a strong-cyclic policy that solves M
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Too large encoding: Towards Compact Polocies

Encodings are exhaustive, all states s represented! %

(Geffner & Geffner 2018) proposed an encoding in SAT computing compact policies.
» of course, not in worst case

Can also be adjusted to compute strong policies.

Can also handle dual FOND: fair and unfair actions!

(Yadav & Sardina 2023): alternative encoding in a Answer Set Programming (ASP):
» More compact — exploits ASP first-order language.

» More readable — uses a more declarative style.
» Integrates regression ideas from PRP.

> Exploits ASP technology.
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Compact Controllers via ASP (Yadav & Sardina 2023)

¢ Key idea: devise a finite state controller with n states - (Geffner & Geffner 2018)

Encoding in ASP for FOND problem P = (A, I, G):
® atom(P): for each predicate P € A.

® action(A): for each action A € A. In addition, to define an l
action’s precondition and effects we use the following terms: go(1,2) 0 f
» prec(A, P): atom P is in precondition of action A. lZN{
) . ) ) change(2 1 l
> effect(A, E): associates an action with its E-th effect (one e
per oneoff effect). l chdnge(2)

refue 2
» add(A, E, P): E-th effect of action A adds atom P. l
> del(A, E, P): E-th effect of action A deletes atom P. g(2,3) 3
® init(P): predicate P € [ is true in the initial state. '
g

® goal(P): predicate P € (5 is in the goal condition.
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Define Controllers States and Transitions

Solver to decide:
policy(S, A): action A executed in controller state S.

next(S1, E, S2): S2 is the next controler state if the E-th effect of prescribed action in
S1 ocurrs.
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Define Controllers States and Transitions

Solver to decide:
policy(S, A): action A executed in controller state S.

next(S1, E, S2): S2 is the next controler state if the E-th effect of prescribed action in
S1 ocurrs.

1 state(0..k). ¥ states of the controller
> {policy (S, A): action(A)} = 1:- state(S), S != k.
3 {next(S1, E, S2): state(S82)} = 1 :- policy(S1l, A), effect(A, E).

Defines controller k + 1 states. State k is goal state.
Select one action per controller state (except goal state k).

Defines a transition for each action’s effect to a next controller state.
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Define Controllers States and Transitions

1 holds(S, P) :- policy(S, A), prec(A, P).

> holds(S1, P) :-

3 next(S1, E, S2), holds(S2, P), policy(S1, A), not add(A, E, P).
4 -holds(82, P) :- next(S1, E, S2), policy(S1, A), del(A, E, P).

5 -holds(0, P) :- atom(P), not init(P).

6 holds(k, P) :- goal(P).

Preconditions must hold where action is prescribed.

Regression: P must have been true in the previous controller state.
Progression: P must be false next if action deleted it.

Initial state negative atoms.

@ What must be true at goal controller state k
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Define Solution Concept: Strong Cyclic

1  reachableG(S):- state(S), S = k.
> reachableG(S):- next(S, _, S1), reachableG(S1).
3 :— not reachableG(S), state(S).

Goal controller state is reachable from itself.

Transitive clousure: Any (previous) controller state connected to a controller state that
reaches the goal state, also reaches the controller goal state.

Constraint: No controller state does not reach the goal state.
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Full FOND-ASP Code

state(0..k). Y states of the controller
{policy(S, A): action(A)} = 1:- state(S), S != k.
{next(S1, E, S2): state(S2)} = 1 :- policy(S1, A), effect(A, E).

holds (S, P) :- policy(S, A), prec(A, P).
holds(S1, P) :-
next(S1, E, S2), holds(S2, P), policy(S1, A), not add(A, E, P).

-holds(S2, P) :- next(S1, E, S2), policy(S1, A), del(A, E, P).
-holds (0, P) :- atom(P), not init(P).
holds(k, P) :- goal(P).

reachableG(S):- state(S), S = k.
reachableG(S):- next(S, _, S1), reachableG(S1).
:- not reachableG(S), state(S).

If a model is returned, controller defined in predicates policy/2 and next/3.
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Experimental Results vs. PRP and FOND-SAT
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10: Better in risky non-determinism domains — first five. PRP better in the rest.
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Recap SAT/ASP for FOND Planning

® Declarative elegant solver for FOND planning problems via SAT or ASP.
e Compact controllers: finite state controller with k + 1 states.
® Increase the size when no solution found, and repeat.

e Faster than classical planning based approaches in domains with meaningful
non-determinism (“risky”).

e Can incorporate domain control knowledge (e.g., “do not executre a after b").

e Still struggles with large domains with “easy” non-determinism.
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Part 4. Non-deterministic Planning

Non-deterministic Planning
Solution Concepts for FOND Planning

Solving FOND Planning
m FOND Planning using Classical Planners
m FOND Planning via SAT
m Compact Policies via ASP/SAT

Conditional Fairness
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Part 4. Non-deterministic Planning

Conditional Fairness
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Can the robot get the money?
Consider an robot in a corridor:

® Robot can move left or right (up to the walls). Unknown size of steps, but > 1

e A price is at some of the end of the corridor.

® Robot doesn’t know its cell, but can sense if there is a wall on left/right after moving.
© Can the robot get the money? How to model the setting?
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Can the robot get the money?
Consider an robot in a corridor:

E [Tl [T

® Robot can move left or right (up to the walls). Unknown size of steps, but > 1

e A price is at some of the end of the corridor.

® Robot doesn’t know its cell, but can sense if there is a wall on left/right after moving.
© Can the robot get the money? How to model the setting?

(define (domain tile)
(:predicates (leftWall) (rightWall))
(:action right right 1eft
:parameters ()
:precondition (not rightWall) rich W rich
:effect (oneof () (rightWall))) Iwall right U rwall
(:action left
:parameters ()
:precondition (not leftWall)

ceffect (oneof () (leftWall))) Lef O right
(:action pick lwall et /-\ rwall
:parameters () U

:precondition (or leftWall rightWall) right T left

:effect (rich)))
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Can the robot get the money?

Consider an robot in a corridor:

sl [ [ [ [ I [T}-[IT]]Is

right jeft
© Would this controller work? rich W rich
Iwall" J/ right '€ rwall

=€

right, left pick

lwall .
— 1 2 @ pick

left pick left right

right left

~(O
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Can the robot get the money?

Consider an robot in a corridor:

right jeft
© Would this controller work? YES! rich ‘/Wf_t\ rich
O wall J vignt % rwall
lwal .
-y wall 2 @ pick right, left pick
left pick left A right
Strong-cyclic policy: Retrying left works! right T left
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Can the robot get the money?

Consider an robot in a corridor:

© What about this one?

right
right jeft

rwaly 3 rich W rich

Iwall Jl' right rwall

— 1 2 4 i
lwall @ pick

left pick

right, left

pick

left right
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Can the robot get the money?

Consider an robot in a corridor:

1]

© What about this one? NO!

right
right jeft

rwalﬁ 3 rich W rich
2

Iwall J right rwall

—_— 1 / 4 i
Twall @ pick

left pick

right, left pick

left right

How come? It is also a strong-cyclic policy! =
States where rich true are always reachable..
left action done infinitely many times in initial state

right left

~On

S. Sardifia, Al Classical and Non-deterministic Planning: Model-based Autonomous Behavior, , July 28 -August 1, ECI25 230/248



Conditional Fairness (Rodriguez et al. 2021)

Standard fairness assumption is not enough:
> trying left is not sufficient!

Joumal of Ariificial Intelligence Research 74 (2022) 87-916 Submitted 12/2021: published 06/2022

o
G

» must not move Tlght while tryl ng... FOND Planning with Explicit Fairness Assumptions

Ivan D. Rodriguez IVANDANIELRA@GMAIL.COM
Blai Bonet BONETBLAI@GMAIL.COM

® We need conditional fairness: left is fair as long as B i Bl S
right is not executed. e
» Same for right: fair provided left is not executed. HetorCofiur, TR T

Universitat Pompeu Fabra, Barcelona, Spain
Institucié Catalana de Recerca i Estudis Avangats (ICREA), Barcelona, Spain
Linkiping University, Linkiiping, Sweden

Standard FOND planners cannot handle this: they -

We consider the problem of reaching a propositional goal condition in fully-observable non-

assume that all actions are fair. P

itly. The fairess assumptions are of the form A/ and say that state trajectories that
s of an action a from A in a state s and finite occurrence of actions fror
infinite occurrences of action a in s followed by each one of its possible outcomes. The

H ! + AS P it traectorie tha violate his condition are deemed as unfair and the soluti
(Rodriguez et al. 2021)'s FOND™ in can IS ek i I o i i e
: ol 23 QNP plansii. plioing wiods] iimchied receinlyfo
h a n d Ie . ises of FOND planning with faimess h\umphmh of this form which can also be
| g S _ 1 1 1 i 1 :OND* planner is implemented by reducing FOND? plmmung to answer set programs, and
tron g-cyc lic p olicies with conditional fairness. its performance s evaluated in comparison with FOND and QNP planners, and LTL synthesis tools.

Two other FOND* planners are introduced as well which are more scalable but are not complete.

SEBASTIAN.SARDINA @RMIT.EDU.AU

. must also

» Mixed fairness: some actions are fair, others not. (Best Paper Award |CAPS'21)
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FOND™

Let's generalize FOND:

FOND™ Problem

A FOND™ problem P. = (P,C) is a FOND problem P extended with a set C of
(conditional) fairness assumptions of the form A;/B;, i = 1,...,n and where each A; is a
set of non-deterministic actions in P, and each B; is a set of actions in P disjoint from A;.

Meaning of A/B € C: If a state trajectory contains infinite occurrences of actions a € A in
a state s, and finite occurrences of actions from B, then s must be immediately followed by
each s’ € F(n(s), s) an infinite number of times.

= jf left is executed infinitely many times in s, but right is executed, say, 10 times, then
eventually we will see the left wall.
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FOND Solutions as FOND™ Solutions

FOND™ Problem

A FOND™ problem P. = (P,C) is a FOND problem P extended with a set C' of
(conditional) fairness assumptions of the form A;/B;, i = 1,...,n and where each A; is a
set of non-deterministic actions in P, and each B; is a set of actions in P disjoint from A;.

Strong and strong cyclic planning all have solutions defined by the implicit fairness
assumptions particular to each one of them.
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FOND Solutions as FOND™ Solutions

FOND™ Problem

A FOND™ problem P. = (P,C) is a FOND problem P extended with a set C' of
(conditional) fairness assumptions of the form A;/B;, i = 1,...,n and where each A; is a
set of non-deterministic actions in P, and each B; is a set of actions in P disjoint from A;.

Strong and strong cyclic planning all have solutions defined by the implicit fairness
assumptions particular to each one of them.

Theorem
The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P.=(P,{A/0}), where A is the set of all the non-deterministic actions in P.
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FOND Solutions as FOND™ Solutions

FOND™ Problem

A FOND™ problem P. = (P,C) is a FOND problem P extended with a set C' of
(conditional) fairness assumptions of the form A;/B;, i = 1,...,n and where each A; is a
set of non-deterministic actions in P, and each B; is a set of actions in P disjoint from A;.

Strong and strong cyclic planning all have solutions defined by the implicit fairness
assumptions particular to each one of them.

Theorem

The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P.=(P,{A/0}), where A is the set of all the non-deterministic actions in P.

Theorem

The strong solutions of a FOND problem P are the solutions of the FOND™ problem
P. = (P,().
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FOND™-ASP: An ASP-based Planner
1 % policy, edges, and connectedness
> { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S). TTAL(S)
3 successor(S,T) :- pi(S,A), TRANSITION(S,A,T). GOAL(S)
4 ACTION(A)
5 connected(S,T) :- successor(S,T). Eg?fﬁ?"(s’A’T)
6 connected(S,T) :- connected(S,X), successor(X,T), S != X. BSET(B,I)
7
8 blocked(S,T) :- STATE(S), STATE(T), not connected(S,T).
9 blocked(S,T) :- connected(S,T), terminate(S).
0 blocked(S,T) :- connected(S,T), terminate(T).
i1 blocked(S,T) :- connected(S,T),
12 blocked (X,T) successor (S,X), connected(X,T).
L3
na fair(S) :- pi(S,A), ASET(I,A), blocked(X,S) pi(X,B), BSET(I,B), not blocked(S,X).
[L5
16 % terminating states
17 terminate(S) :- GOAL(S).
s terminate(S) :- fair(S), successor(S,T), terminate(T).
9 terminate(S) :- not fair(S), successor(S,_), terminate(T) successor(S,T)
RO
p1 % reachable states must terminate
p2  :- reachable(S), not terminate(S).
p3 reachable(S) :- INITIAL(S).
p4 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).
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FOND™-ASP: Graphical Intuition...

figure of a transition system, with two states looping, the first selects action A and the second
B. draw successors of each..
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FOND™-ASP: Solution Policy

1 7% policy, edges, and connectedness
> { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S).
3 successor (S,T) :- pi(S,A), TRANSITION(S,A,T).

5 % reachable states must terminate

6 :— reachable(S), not terminate(S).
7 reachable(S) :- INITIAL(S).
g8 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).

2 Select an action per domain state.

3 Edges are transitions of the action selected.
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FOND™-ASP: Solution Policy

1 7% policy, edges, and connectedness
> { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S).
3 successor (S,T) :- pi(S,A), TRANSITION(S,A,T).

5 % reachable states must terminate

6 :— reachable(S), not terminate(S).
7 reachable(S) :- INITIAL(S).
g8 reachable(S) :- reachable(X), not GOAL(X), successor(X,S).

2 Select an action per domain state.

3 Edges are transitions of the action selected.

6 Constraint: every reachable state via the policy needs to eventually terminate.

7-8 Define reachable states via the policy.
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FONDT™-ASP: State Termination

Defines when a state will eventually lead to termination and not get “sucked” in a loop..

1 % terminating states

> terminate(S) :- GOAL(S).

3  terminate(S) :- fair(S), successor(S,T), terminate(T).
4+ terminate(S) :- not fair(S), successor(S,_),

5 terminate(T) : successor(S,T).

2 If the state is a goal state.

3 If state will behave fairly (wrt effects of prescribed action) and one successor state will
terminate.

4 |If state may not behave fairly, and all successors will terminate.
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FOND™-ASP: Fairness

1 connected(S,T)
> connected(S,T)

:- successor(S,T).
:— connected(S,X), successor(X,T), S != X.

4 7% terminating states

5 terminate(S)
6 terminate(S)
7  terminate(S)

GOAL(S) .
fair(S), successor(S,T), terminate(T).
not fair(S), successor(S,_),

8 terminate(T) : successor(S,T).

9

o fair(S) :- pi(S,A), ASET(I,A),

11 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

1-2 States connected by the policy.

4-7 Every path from s to T will terminate somewhere.

10 Fair if any loop that includes actions in a fairness pair A/B (e.g., left and right), will

terminate somewhere else.
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FOND™-ASP: Strong Cyclic

The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P, = (P,{A/0}), where A is the set of all the non-deterministic actions in P.

1 % terminating states

> terminate(S) :- GOAL(S).

3  terminate(S) :- fair(S), successor(S,T), terminate(T).
4+ terminate(S) :- not fair(S), successor(S,_),

5 terminate (T) : successor(S,T).

6
;  fair(S) :- pi(S,A), ASET(I,A), always false
8 blocked(X,S) : pi(X,B), BSET(I,B)% not blocked(S,X).

Line 3 always applies!
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FOND™-ASP: Strong Cyclic

The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P, = (P,{A/0}), where A is the set of all the non-deterministic actions in P.

1 % terminating states

> terminate(S) :- GOAL(S).
3  terminate(S) :- fair(S), successor(S,T), terminate(T).
4+ terminate(S) :- not fair(S), successor(S,_),
5 +arminate (T) : successor(S,T).
( always true

6
+ tair(s)%i- pi(s,4), ASET(I,A), always false
° blocked(X,S) : pi(X,B), BSET(I,B)% not blocked(S,X).

Line 3 always applies!
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FOND™-ASP: Strong Cyclic

The strong-cyclic solutions of a FOND problem P are the solutions of the FOND™ problem
P, = (P,{A/0}), where A is the set of all the non-deterministic actions in P.

1 % terminating states

[ always applies J

> terminate(S) :- GOAL(S).

3  terminate(S) :- fair(S), successor(S,T), terminate(T)./Q/
4+ terminate(S) :- not fair(S), successor(S,_),

5 +arminate (T) : successor(S,T).

. ( always true

+ tair(s)%i- pi(s,4), ASET(I,A), always false
° blocked(X,S) : pi(X,B), BSET(I,B)% not blocked(S,X).

Line 3 always applies!
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FOND™-ASP: Strong

The strong solutions of a FOND problem P are the solutionsof the FOND™ problem
P. = (P,).

1 % terminating states

> terminate(S) :- GOAL(S).

3  terminate(S) :- fair(S), successor(S,T), terminate(T).

4+ terminate(S) :- not fair(S), successor(S,_),

5 terminate (T) : successor(S,T).

6

7 fair(S) :- pi(S,A), ASET(I,A)

8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 4 always applies!
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FOND™-ASP: Strong

The strong solutions of a FOND problem P are the solutionsof the FOND™ problem
P, = (P,0).

1 % terminating states

> terminate(S) :- GOAL(S).

3  terminate(S) :- fair(S), successor(S,T), terminate(T).

4+ terminate(S) :- not fair(S), successor(S,_),

5 arminate (T) : successor(S,T).

:

7 fair(sS)7:- pi(S,A), ASET(I,A)

8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 4 always applies!
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FOND™-ASP: Strong

The strong solutions of a FOND problem P are the solutionsof the FOND™ problem
P, = (P,0).

1 % terminating states

> terminate(S) :- GOAL(S). -

3 terminate(S) :- fair(S), successor(S,T)ﬁi always applies J

4 terminate(S) :- not fair(S), successor(S,_),fyr

5 arminate (T) : successor(S,T).

:

7 fair(sS)7:- pi(S,A), ASET(I,A)

8 blocked(X,S) : pi(X,B), BSET(I,B), not blocked(S,X).

Line 4 always applies!
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Discussion

® We tested FOND"-ASP experimentally:

» Only planner that can solve FOND+ problems!

» Performs better than FOND-SAT and LTL
synthesis tool STRIX.

» PRP scales up better for FOND tasks.

» Limitation: state space grounding.
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Discussion

® We tested FOND™-ASP experimentally:

» Only planner that can solve FOND+ problems!

» Performs better than FOND-SAT and LTL
synthesis tool STRIX.

» PRP scales up better for FOND tasks. e

» Limitation: state space grounding.

back  parking2 »

® FOND = simple extension of classical planning t.
gatel
» Just add oneor in effects!
e But brings radical changes: onshlp  at harbor O—
s . gate2

» Complexity up to EXPTIME-complete.
» Builds plans with loops!

» Can model scenarios with "re-tries” transit1
» Can deal with adversarial domains. N
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Discussion

We tested FOND™-ASP experimentally:
» Only planner that can solve FOND+ problems!
» Performs better than FOND-SAT and LTL
synthesis tool STRIX.
» PRP scales up better for FOND tasks. e
» Limitation: state space grounding.

back  parking2 »

FOND = simple extension of classical planning
» Just add oneof in effects!

at_harbor

e But brings radical changes: °“’ O &)
» Complexity up to EXPTIME-complete. i
» Builds plans with loops!
» Can model scenarios with "re-tries” transitt
» Can deal with adversarial domains. A

FOND™ and domains with “qualitative” numbers?
» e.g., distance to the wall
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Discussi

We tested FOND™-ASP experimentally:

on

» Only planner that can solve FOND+ problems!
» Performs better than FOND-SAT and LTL

synthesis tool STRIX.

> PRP scales up better for FOND tasks.
» Limitation: state space grounding.

» Just add oneor in effects!

e But brings radical changes:

» Complexity up to EXPTIME-complete.

Builds plans with loops!

>
» Can model scenarios with "re-tries”
» Can deal with adversarial domains.

FOND = simple extension of classical planning

FOND™ and domains with “qualitative” .numbers?

onship
s

at_harbor

» e.g., distance to the wall
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Que vimos? «%

Busqueda as a general problem solving method:
> Representacién: state model (a graph!).
» Uninformed methods: BrFS, DFS, IDS, UCS.
» Informed methods: A* and heuristics.
» Heuristics as problem relaxation.
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Que vimos? «%

Busqueda as a general problem solving method:

> Representacién: state model (a graph!).

» Uninformed methods: BrFS, DFS, IDS, UCS.
» Informed methods: A* and heuristics.

» Heuristics as problem relaxation.

Classical Planning = Al Search + Al KR

» Model-based approach to autonomous behavior.
Languages: STRIP and PDDL.

Heuristic extraction by relaxing the representation.
Delete-relaxation heuristic: h™

Approximations: h,q4, Amax, Rrr.

Planning graphs.
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Que vimos? «%

Busqueda as a general problem solving method:

> Representacién: state model (a graph!).

» Uninformed methods: BrFS, DFS, IDS, UCS.
» Informed methods: A* and heuristics.

» Heuristics as problem relaxation.

Classical Planning = Al Search + Al KR

Model-based approach to autonomous behavior.
Languages: STRIP and PDDL.

Heuristic extraction by relaxing the representation.
Delete-relaxation heuristic: h™

Approximations: h,q4, Amax, Rrr.

Planning graphs.

ND Planning: Non-determinism
Non-deterministic state models (no probabilities!)
PDDL with one-of effects + Policies.

Solution concepts: weak, strong, strong-cyclic.
Fairness assumption on environment.
Computing policies.

B F
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Al Planning and Control Synthesis in SE ¥

® What if we want to plan for more complex goals?
Elevator controller: every passenger floor
requests needs to be eventually fulfilled, but never
Al AUTOMATED PLANNING SOFTWARE ENGINEERING
have more than 10 passengers on board. , CohTeO LR THES's

¢ Event-driven systems: some events cannot be
planned/controlled (e.g., user aborts transaction)

¢ |nfinite behavior: continuous operation, never
stop.
What are the goals if we never finish? Infinite
games vs. finite games

¢ Compositional planning/synthesis: software
components described separately
Plan on different PDDLs and the combine.
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LaFHIS - Laboratory on Fundamentals and Tools for Software Engineering

I_AF H | S ‘ The Tools and Foundations
for Software Engineering Lab

What we do The Lab News Contact

R&D Augmentation

We help organisatians snlve difficult nrohlams by annlving
state of the art automated software engineering methods;
technigues and to00IS. We support our partners in
bootstrapping their R&D activities, designing strategies;
identifying key teghnologies and collaboratively developing
solutions.

We incorporate, combing ah@, adapt state of*the art
technlques from program analysis, program, repair, program
understanding domain _snacific hrnmrqmmmg languages,
ano model-based software engineering as needed to
address the specific contexts and pottlenecks that our
partners have.
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https://lafhis.dc.uba.ar

‘.== LA F H | S ‘ The Tools and Foundations
T for Software Engineering Lab
What we do The Lab News Contact

x

R&D Augmentation

We he|p orgamqnfmm anlve difficnlt nmhlamq h\t ﬁmnl\nnm
state of the art automated software englneermg fethods=
technigues and t1o0IS. We support our partners in
bootstrapping their R&D activities, designing strategiesy 4
Identifying key technologwes and collaboratwely developing

solutions. »
7 Q\

We imcorporate, combing ahe adapt stafe ofthe art

technlgques from program analysis, program repair, program =
2 Understanding domain_specific nmnrnmmmg languages, ‘Sa

anc model-based software epgineering as needed to

addaress the Specific contexts and pottlenecks that our

partners have.

&



Contact sebastian.sardina@rmit.edu.au - https://ssardina.github.io/
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sebastian.sardina@rmit.edu.au
https://ssardina.github.io/
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